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Fundamentals of Grasping

Robotic manipulation, where a robot physically interacts and changes the en-
vironment, is one of the most challenging tasks in robot autonomy from the
perspectives of perception, planning, and control. Consider a simple pick-and-
place problem: the robot needs to identify the object, find a good place to grasp,
stably pick up the object, and move it to a new location, all while ensuring no
part of the robot collides with the environment. In practice even this simple task
can become much harder, for example if other objects are in the way and must
be moved first, if the object does not have particularly good grasping features,
if the weight, size, and surface texture of the object is unknown, or if the light-
ing is poor1. Manipulation tasks are also commonly composed of sequences of 1 Generally speaking the infinite vari-

ability of the real world makes robust
manipulation extremely difficult.

interactions, such as making a sandwich or opening a locked door. This chapter
focuses on grasping2, which is a fundamental component to all manipulation

2 D. Prattichizzo and J. C. Trinkle.
“Grasping”. In: Springer Handbook of
Robotics. Springer, 2016, pp. 955–988

tasks.

Grasping

Grasping is a fundamental component of robotic manipulation that focuses on
obtaining complete control of an object’s motion (in contrast to other interac-
tions such as pushing).

Definition 5.0.1 (Grasp). A grasp is an act of restraining an object’s motion through
application of forces and torques at a set of contact points.

Figure 5.1: The Allegro
Hand. Image retrieved from
wiki.wonikrobotics.com.

Grasping is challenging for several reasons:

1. The configuration of the gripper may be high-dimensional. For example the
Allegro Hand (Figure 5.1) has 4 fingers with 3 joints each for a total of 12

dimensions. Plus there are an additional 6 degrees of freedom in the wrist
posture (position and orientation), and all of these degrees of freedom vary
continuously.

2. Choosing contact points can be difficult. An ideal choice of contact points
would lead to a robust grasp, but the space of feasible contacts is restricted
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by the gripper’s geometry. A rigid body object also has 6 degrees freedom,
which affects where the contact points are located in the robot’s workspace.

3. While the robot is attempting the grasp it must be sure that its entire body
does not come into collision with the environment.

4. Once a grasp has been performed it is important to evaluate how robust
the grasp is. While the grasp quality would ideally be optimized during
the planning step, it may be important to also check retroactively in case
uncertainty led to a different grasp than planned.

To address each of these challenges, the grasp can be subdivided into parts:
planning, acquisition/maintenance, and evaluation. This chapter will focus on
the fundamentals of how a grasp can be modeled and evaluated from a mathe-
matical perspective, as well as how grasps can be planned3 using grasp force 3 Part of grasp planning also includes

the motion planning of the entire robot,
but the focus of this chapter is on the
grasp itself.

optimization. Learning-based approaches to grasping and manipulations will
also be discussed at a high level in Section 5.4 and 5.5.

5.1 Grasp Modeling

A grasp plan may be parameterized in several ways, including by the approach
vector or wrist orientation of the gripper, by the initial finger configuration, or
directly by points of contact with the object. However, regardless of the plan-
ning parameterization the resulting contacts between the gripper and the object
will define the quality of the grasp. Therefore it is useful and convenient for
grasp modeling to consider the contact points as the interaction interface be-
tween the gripper and object.

5.1.1 Contact Types

There are generally three types of contact that can occur in grasping scenarios:

1. Point: a point contact occurs when a single point comes in contact with either
another point, a line, or a plane. A point contact is only stable if it is a point-
on-plane contact4, point-on-point or point-on-line contacts are unstable. 4 Point-on-plane contacts are by far the

most commonly modeled contact types
and will almost always be used in grasp
analysis.

2. Line: line contacts occur when a line comes in contact with another line or a
plane. Line-on-plane and line-on-nonparallel line contacts are stable, but line-
on-parallel line contacts are unstable. Line contacts can also be represented as
two point contacts.

3. Plane: plane-on-plane contacts are always stable. Plane contacts can also be
represented as point contacts by converting a distribution of normal forces
across a region into a weighted sum of point forces at the vertices of the
region’s convex hull.
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Figure 5.2: Grasping contacts
are generally either point-
on-point (left), point-on-line
(middle), point-on-plane (right).

5.1.2 Point-on-Plane Contact Models

Point-on-plane contact models are by far the most commonly used for grasping
since the possible contact points for most objects are almost always surface
points (and not sharp edges or points). The purpose of the contact model is
to specify the admissible forces and torques that can be transmitted through a
particular contact. Considering a local reference frame defined at the contact
point with the z direction pointing along the object’s surface normal (with the
positive direction defined as into the object), the force f can be written as:

f = fnormal + ftangent,

where fnormal = [0, 0, fz]T is the vector component along the normal direction
(with magnitude fz) and ftangent = [ fx, fy, 0]T is the vector component tangent
to the surface. For all types of contact only an inward force can be applied,
therefore fz ≥ 0. Three types of contact models are commonly used, and each
defines a set F of admissible forces that can be applied through the contact:

1. Frictionless Point Contact: forces can only be applied along the surface nor-
mal, no torques or forces tangential with the surface are possible ( ftangent =

0):
F = { fnormal | fz ≥ 0}.

These types of contact models are more common in form closure grasps.

2. Point Contact with Friction5: it is possible to apply forces in directions other

5 Also referred to as the hard finger
model.

than just the surface normal. The admissible forces (i.e. forces that don’t lead
to slipping) are typically defined by a friction cone:

F = { f | ‖ ftangent‖ ≤ µs‖ fnormal‖, fz ≥ 0}.

where µs is the static friction coefficient associated with the surface (see Fig-
ure 5.3). Figure 5.3: Friction cone de-

fined by a static coefficient of
friction µs.

Figure 5.4: Linearized friction
cone to inner approximate the
true cone.

A pyramidal inner-approximation of the friction cone is often more useful
from a computational standpoint, since its definition only requires a finite
set of vectors (see Figure 5.4). The point contact with friction model is more
common in force closure grasps.

3. Soft-finger Contact Model: allows for a torque τnormal around the surface
normal axis and also includes a friction cone for the forces as in the point
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contact with friction model. The admissible torques are also constrained by
friction:

F = {( f , τnormal) | ‖ ftangent‖ ≤ µs‖ fnormal‖, fz ≥ 0, |τnormal| ≤ γ fz}.

where γ > 0 is the torsional friction coefficient.

5.1.3 Wrenches and Grasp Wrench Space

Under the assumption of a specific contact model, a grasp (defined by a set of
contact points) can be quantified and evaluated by determining the grasp wrench
space6, which defines how the grasp can influence the object through an applied 6 The grasp wrench space is a subset of

the wrench space Rn, where n = 6 in 3D
settings and n = 3 in 2D settings.

wrench.

Definition 5.1.1 (Wrench). A wrench is a vector valued quantity that describes the
forces and torques being applied to an object. For a force f ∈ R3 and torque τ ∈ R3

applied at the object’s center of mass, the wrench is the stacked vector:

w =

[
f
τ

]
∈ R6,

and is typically written with respect to a frame fixed in the body.

Each contact point i in a grasp applies a wrench to the object. Additionally
the torque τi can be computed by τi = di × fi where di is the vector defining the
position of the i-th contact point with respect to the object’s center of mass. The
wrench can then be written as:

wi =

[
fi

λ(di × fi)

]
, (5.1)

where the constant λ ∈ R is arbitrary but can be used to scale the torque magni-
tude if desired7.

7 If the forces fi,j are dimensional a
value of λ = 1 is common. When the
forces are unit-dimension (i.e. scaled by
their maximum magnitude), λ could be
chosen to non-dimensionalize the entire
wrench wi by non-dimensionalizing the
distance vector di (i.e. scale by an object
size metric).Using this definition of a wrench8, a grasp can be defined as the set of all

8 For a soft-finger contact model the
additional torque term must also be
included.

possible wrenches that can be achieved by the grasp’s contact points. Mathe-
matically, an admissible force fi applied at the i-th contact point can be linearly
mapped into the corresponding wrench on the object as Gi fi, where Gi is a
wrench basis matrix that also includes a transformation from the local contact
reference frame to an object-defined global reference frame. Therefore the total
wrench on the object from all contacts is:

w =
k

∑
i=1

Gi fi = G


f1
...
fk

 , G =
[

G1 . . . Gk

]
, (5.2)

where the combined matrix G is referred to as the grasp map (which varies de-
pending on the type of contact model used).

The grasp wrench space can then be defined as:
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Definition 5.1.2 (Grasp Wrench Space). The grasp wrench spaceW for a grasp with
k contact points is the set of all possible wrenches w that can be applied to the object
through admissible forces:

W := {w | w =
k

∑
i=1

Gi fi, fi ∈ Fi, i = 1, . . . , k}. (5.3)

In other words, the grasp wrench space is defined by the output of (5.2) over
all possible applied force combinations { fi}k

i=1. If the grasp wrench space is
large the grasp can compensate for a bigger set of external wrenches that might
be applied to the object, leading to a more robust grasp.

Example 5.1.1 (Computing a Grasp Wrench Space from Friction Cones). Con-
sider a grasping problem with k contact points with friction, and let contact
point i be associated with a linearized friction cone Fi whose edges are defined
by the set of m forces:

{ fi,1, fi,2, . . . fi,m},

such that any force fi ∈ Fi can be written as a positive combination of these
vectors:

fi =
m

∑
j=1

αi,j fi,j, αi,j ≥ 0.

The condition ∑m
j=1 αi,j ≤ 1 will also be imposed to constrain the overall mag-

nitude9. Geometrically, this means that the friction cone Fi is the convex hull of 9 In practice the physical hardware has
limitations on the magnitude of the
normal forces that can be applied.

the points fi,j and the origin of the local contact reference frame (see Figure 5.5).

Figure 5.5: Any force fi ∈ Fi

can be written as a convex com-
bination of the forces along the
edge vectors fi,j.

This friction cone can then be mapped into the wrench space using (5.1). As-
suming the forces fi,j and position vector di are already expressed in a reference
frame fixed in the object that is common to all i contact points, the grasp wrench
spaceW can be written as:

W = {w | w =
k

∑
i=1

wi, wi =
m

∑
j=1

αi,jwi,j, wi,j =

[
fi,j

λ(di × fi,j)

]
,

m

∑
j=1

αi,j ≤ 1, αi,j ≥ 0}.

In other words, the grasp wrench space is defined by taking the Minkowski sum
over the sets of wrenches that can be generated from each individual contact!

For example, consider the 2D problem shown in Figure 5.6 where there are
k = 2 contact points with friction. The friction cones are defined by the convex
hull of the vectors { f1,1, f1,2} and { f2,1, f2,2} (and their origins) and the distance
vectors from the center of mass to the contact points are d1 and d2. The force
vectors fi,j are then mapped into the wrenches wi,j (shown on a 2D plot of verti-
cal force fy and torque τ in Figure 5.6, ignoring the horizontal force components
fx). The grasp wrench spaceW is then shown in the grey region of the wrench
space, where the solid grey line is the boundary ofW .
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Figure 5.6: An example 2D
grasp consisting of two point
contacts with friction. The
friction cones shown in the fig-
ure on the left yield the grasp
wrench space in the figure
on the right (showing only
the vertical force and torque
dimensions). Note that the
grasp wrench space is bounded
because it is assumed the mag-
nitude of the contact forces are
bounded. The solid grey line
represents the boundary ofW .5.2 Grasp Evaluation

Now that the basics of grasp modeling have been introduced10 it is possible to 10 contact types, contact models, grasp
wrench spacesexplore techniques for evaluating whether a grasp is “good”. In particular, an

ideal grasp is one that has closure.

Definition 5.2.1 (Grasp Closure). Grasp closure occurs when the grasp can be main-
tained for every possible disturbance load.

For example having grasp closure on a book would enable the gripper to
maintain its grasp even if the book was hit by another object or if another book
was suddenly stacked on top of it. In practice it may not be reasonable to as-
sume that every magnitude disturbance load could be accounted for, but the
concept of closure is useful nonetheless.

It can also be helpful to distinguish between two types of grasp closure. A
form closure11 grasp typically has the gripper joint angles locked and there is

11 Also called power grasps or envelop-
ing grasps. A grasp must have at least
seven contacts to provide form closure
for a 3D object.

no “wiggle” room for the object (i.e. the object is kinematically constrained).
Alternatively, a force closure12 grasp uses forces applied at contact points to 12 Also called a precision grasp. Under

a point contact with friction model, a
grasp must have at least three contacts
to provide force closure for a 3D object.

be able to resist any external wrench. Force closure grasps typically rely on
friction and generally require fewer contact points than are required for form
closure, but may not be able to actually cancel all disturbance wrenches if the
friction forces are too weak. This chapter will primarily focus on evaluating
force closure grasps since these are most common in robotics.

5.2.1 Force Closure Grasps

The concept of force closure can be related to the grasp modeling concepts from
Section 5.1:

Definition 5.2.2 (Force Closure Grasp). A grasp is a force closure grasp if for any
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Figure 5.7: Examples of grasps
with form closure (left) and
force closure under the soft-
finger contact model (right).

external wrench w there exist contact forces { fi}k
i=1 such that:

−w =
k

∑
i=1

Gi fi. fi ∈ Fi, i = 1, . . . , k,

or equivalently such that:
−w ∈ W .

This definition implies that the grasp wrench space must satisfyW = Rn for
a force closure grasp, which implicitly assumes that the contact forces can be
infinite in magnitude.13 Since real hardware has limitations on the magnitude 13 For 2D objects n = 3 and for 3D

objects n = 6.of the applied contact forces, a more practical definition of force closure is to
be able to resist any external wrenches. The conditions for force closure can be
summarized by the following theorem:

Theorem 5.2.3. In an n-dimensional vector space with:

W := {w | w =
N

∑
k=1

βkwk, βk ≥ 0},

W = Rn if and only if the set {wk}N
k=1 contains at least n + 1 vectors, n of the vectors

are linearly independent, and there exists scalars βk > 0 such that:

N

∑
k=1

βkwk = 0.

From a practical perspective this theorem specifies a minimum number of
different wrenches that must be used as a basis for the grasp wrench space, and
also states that it must be possible for the grasp to apply zero wrench even when
some of the contact forces are non-zero. These conditions are equivalent to saying
that grasp wrench spaceW must contain the origin in its interior14. 14 The grasp is not in force closure if the

origin is on the boundary ofW .Note that in the practical case where the applied contact forces are assumed
to be bounded, the conditions of Theorem 5.2.3 must still hold to guarantee the
origin is in the interior ofW , which is required to resist any external wrench.
The implications of this theorem are explored further in the following examples.
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Example 5.2.1 (2D Object (Forces Only)). Consider a simplified 2D problem
where instead of complete force closure (i.e. ability to withstand any wrench) it
is sufficient to only require the cancellation of external forces. In this case n = 2
and Theorem 5.2.3 states that it must be possible for the grasp to generate 3
force vectors where 2 are linearly independent and where:

β1 f1 + β2 f2 + β3 f3 = 0, β1, β2, β3 > 0.

Two examples grasps are shown in Figures 5.8 and 5.9. In Figure 5.8 the three
contacts are frictionless, but even though there are 3 possible force vectors with
2 linearly independent, there is no way to generate zero force with non-zero
forces at each contact! Therefore this grasp does not have force closure.

Figure 5.8: A 2D grasp with
frictionless contacts that cannot
compensate for all possible ex-
ternal forces on the object. The
middle and right-side figures
show the space of all possible
applied forces for the cases
of unbounded and bounded
contact force magnitude, re-
spectively.

Alternatively, Figure 5.9 shows a case where it is possible to have force clo-
sure using a point contact without friction and a point contact with friction (a
hypothetical example). In this case all of the conditions in Theorem 5.2.3 are sat-
isfied, and it can be seen that the origin is contained in the interior of the space
of possible applied forces.

Figure 5.9: A 2D grasp consist-
ing of a contact with friction
and a contact without friction.
The middle and right-side
figures show the space of pos-
sible forces for the cases of
unbounded and bounded mag-
nitude, respectively. In the
unbounded case it is possible
to compensate for any exter-
nal force, and in the bounded
case it is possible to resist an
arbitrary force.

Example 5.2.2 (2D Object). In the more general case with 2D objects where
the torque is also considered, the grasp wrench space is in 3D (i.e. W ⊆ R3).
Therefore, Theorem 5.2.3 states the grasp wrench space satisfiesW = R3 if and
only if it is possible for the grasp to generate at least 4 different wrenches, with
3 being linearly independent, and where:

β1w1 + β2w2 + β3w3 + β4w4 = 0, β1, β2, β3, β4 > 0.

If frictionless contacts are assumed these conditions require at least 4 contact
points and in the friction case at least 2 contacts are required.
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Consider again the grasp shown in Example 5.1.1 (Figure 5.6). The 4 edges of
the friction cones create a set of 3 linearly independent wrenches, but there is no
way to generate zero wrench with non-zero contact forces. This is evident in the
fact that it is not possible to generate a negative torque, which means the grasp
is not in force closure15. An alternative grasp that is in force closure is shown in 15 Notice again that the origin is not

contained in the interior of the grasp
wrench space!

Figure 5.10, which leverages a third contact point to ensure the grasp achieves
stability.

Figure 5.10: A 2D grasp con-
sisting of three point contacts
with friction. The friction cones
shown in the figure on the
left yield the grasp wrench
space in the figure on the right
(showing only the vertical force
and torque dimensions and
assuming bounded contact
force magnitudes). This grasp
is in force closure because it
can resist any external wrench
(the origin is contained in the
interior ofW).Example 5.2.3 (3D Object). For 3D objects the grasp wrench space is in 6D (i.e.

W ⊆ R6). Theorem 5.2.3’s conditions therefore require that the grasp to be able
to generate at least 7 different wrenches, with 6 being linearly independent, and
where:

7

∑
k=1

βkwk = 0, βk > 0.

If frictionless contacts are assumed these conditions require at least 7 contact
points and in the friction case at least 3 contacts are required.

5.2.2 Grasp Wrench Hull

The grasp wrench spaceW defines the set of all possible wrenches that can
be applied to an object by a grasp, but unfortunately computing this set can
be quite cumbersome in practice. One alternative approach for characterizing
a grasp is through the definition of the grasp wrench hull, which can be effi-
ciently computed. Given a set of linearized friction cones Fi defined by the set
of bounded forces { fi,1, fi,2, . . . , fi,m} for each contact in the grasp, the wrench
hull W̃ is mathematically defined as:

W̃ = {w | w =
k

∑
i=1

m

∑
j=1

αi,jwi,j, wi,j =

[
fi,j

λ(di × fi,j)

]
,

k

∑
i=1

m

∑
j=1

αi,j = 1, αi,j ≥ 0},

where di is again the vector from the object center of mass to contact point
i. Note that this is almost identical to the grasp wrench space definition ex-
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cept that the constraint ∑m
j=1 αi,j ≤ 1 for all i has been replaced by the con-

straint ∑k
i=1 ∑m

j=1 αi,j = 1. Put simply, the wrench hull is the convex hull of the
wrenches wi,j! The difference between the grasp wrench space and the wrench
hull is shown in Figure 5.11 for the grasp from Example 5.2.2.

Figure 5.11: Difference between
grasp wrench spaceW (grey
area) and wrench hull W̃ (area
enclosed by black dashed line)
for the grasp in Example 5.2.2.

Importantly the property W̃ ⊆ W holds by definition. Therefore grasp force
closure is also guaranteed when the origin is in the interior of the wrench hull
space. This fact, coupled with the fact that W̃ is easier to compute thanW ,
makes it a useful characterization of grasps for evaluating grasp quality.

5.2.3 Grasp Quality

If the gripper could apply contact forces with infinite magnitude then a “good”
grasp could simply be defined as one that is in force closure. However a more
practical definition of grasp quality should be based on the assumption that the
magnitude of the contact forces is bounded. In other words, a metric for grasp
quality should quantify how well the grasp can resist external wrenches for a given
bound on the contact force.

To accomplish this, grasp quality metrics can be defined based on the defini-
tion of the grasp wrench hull W̃ . In particular, a useful metric is the radius of
the largest ball centered at the origin that is completely contained in the grasp
wrench hull (Figure 5.12). This metric is useful for the following reasons:

1. If the radius is zero, the origin is not contained in the interior of the wrench
hull and therefore the grasp is not in force closure.

2. For a radius greater than zero, the metric represents the magnitude of the
smallest external wrench that pushes the grasp to the limits. The direction
from the origin to where the ball touches the boundary ofW identifies
the (opposite) direction in which the grasp is least able to resist external
wrenches.

Figure 5.12: Grasp quality can
be measured as the radius ε of
the largest ball contained in the
grasp wrench hull centered at
the origin.

Another method for quantifying the grasp quality is to compute the volume
of the grasp wrench hull W̃ . This approach provides more of an average-case
metric rather than a worst-case metric, and can help differentiate between differ-
ent grasp spaces that have the same worst-case metric. For example Figure 5.13

shows a grasp with the same worst-case metric as the grasp in Figure 5.12, but
which would be considered worse with respect to the volumetric (average-case)
metric.

Figure 5.13: Using the volume
of W̃ as a metric for grasp
quality can help differentiate
between two grasps with the
same worst-case performance.
For example this grasp would
be considered less robust than
the grasp in Figure 5.12 since it
has smaller volume.

5.3 Grasp Force Optimization

Recall from Section 5.1 that for a particular contact model a grasp map matrix G
can be defined such that:

w = G


f1
...
fk

 , (5.4)
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where fi is the force vector associated with contact point i and w is the total
wrench applied to the object. Additionally, recall that the matrix G also includes
a rotational transformation such that the force vectors fi are in local contact
reference frames but w is represented in a common frame fixed in the object
body (at the center of mass).

The next logical question to ask is how to compute force vectors { fi}k
i=1 to

achieve a desired wrench w16. While one naive approach would be to just solve 16 The desired wrench may be used
to counter an external disturbance (to
maintain equilibrium) or to manipulate
the object.

(5.4) using a least-squares method, this would fail to account for any constraints
on the force vectors. In particular, this section will focus on the point contact
with friction model where each force vector fi = [ f (i)x , f (i)y , f (i)z ]T must satisfy
the friction cone constraint:√

f (i)x
2
+ f (i)y

2
≤ µs,i f (i)z , f (i)z ≥ 0,

where µs,i is the static friction coefficient for contact i. In this section the com-
pact notation:

fi ∈ Fi, Fi := { f ∈ R3 |
√

f 2
x + f 2

y ≤ µs,i fz, fz ≥ 0},

for the friction cone constraint will again be used. It might also be desirable
to include additional constraints on the force vectors, for example to account
for hardware limitations (e.g. torque limits) or kinematic constraints. These
additional constraints will be generally referred to by a convex constraint set C,
such that fi ∈ C is required for all i = 1, . . . , k.

To summarize, the problem is to find a set of force vectors { fi}k
i=1 such that

(5.4) is satisfied17 and such that fi ∈ Fi and fi ∈ C for i = 1, . . . , k. This problem

17 In the case that the desired wrench is
used to counter an external disturbance,
the condition (5.4) is referred to as the
equilibrium constraint.

can then be solved by formulating it as a convex optimization problem18,19: 18 S. Boyd and B. Wegbreit. “Fast Com-
putation of Optimal Contact Forces”.
In: IEEE Transactions on Robotics 23.6
(2007), pp. 1117–1132

19 The problem is technically a second-
order cone program because of the
friction cone constraints.

minimize
fi , i∈{1,...,k}

J( f1, . . . , fk),

s.t. fi ∈ Fi, i = 1, . . . , k,

fi ∈ C, i = 1, . . . , k,

w− G
[

f1 . . . fk

]T
= 0,

(5.5)

where J(·) is the objective function that is convex in each fi. Simply choosing
J = 0 would result in a convex feasibility problem, but a more common choice
is:

J( f1, . . . , fk) = max{‖ f1‖, . . . , ‖ fk‖},

which is the maximum applied force magnitude among all contact points.
Note that the fundamental disadvantage of this optimization-based approach

is that the positions of all contacts with respect to the object’s center of mass
and the object’s friction coefficients are assumed to be known. It is also assumed
that the desired wrench w is known!
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5.4 Learning-Based Approaches to Grasping

Model-based methods for grasp evaluation and optimization require several
assumptions that may be either difficult to validate in practice, or may not even
be valid in all scenarios. These assumptions include:

1. A coulomb (static) friction model defines the friction cone, and the coefficient
µs is known.

2. The object’s geometry and mass distribution is known20, such that given a 20 One option would be to build a
database of known objects, but this may
not be scalable to real world problems.

contact point the vector di from the object’s center of mass to the contact is
known.

3. The object is a rigid body.

4. The desired forces fi can be applied perfectly.

Learning-based methods for grasp analysis21 can leverage data to decrease re- 21 J. Bohg et al. “Data-Driven Grasp Syn-
thesis—A Survey”. In: IEEE Transactions
on Robotics 30.2 (2014), pp. 289–309

liance on these assumptions, for example by not requiring explicit knowledge of
the object’s physical parameters. Learning-based methods can also combine the
task of grasping with other parts of the manipulation pipeline, such as percep-
tion and motion planning.

This section will introduce some recent learning-based approaches to robotic
grasping, which is still a very active area of research. Specifically, these exam-
ples will demonstrate several learning-based strategies including approaches
that create synthetic training data from model-based simulators and approaches
that use real hardware to generate data.

5.4.1 Choosing a Grasp Point from an RGB Image22 22 A. Saxena, J. Driemeyer, and A. Ng.
“Robotic Grasping of Novel Objects
using Vision”. In: The International
Journal of Robotics Research 27.2 (2008),
pp. 157–173

The objective of this supervised learning approach was to learn how to find a
good grasp point in an RGB image of an object, and then generate a prediction
of the point’s 3D position. Since supervised learning techniques can require a
lot of training data, this approach auto-generated training images synthetically
using realistic rendering techniques (see Figure 5.14). The use of synthetic data
also made it easier to collect a diverse training set including images with differ-
ent lighting, object color, and object orientation and size.

Figure 5.14: Synthetic image
of a cup and its labeled grasp
point from Saxena et al. (2008).

Once a model was trained to produce good grasp point classifications, 3D
predictions of the target grasp position were generated by structure-from-motion,
where two images were used to triangulate the point in space. While there are
certainly limitations to this approach, this work produced promising results,
including good grasp success rates on novel objects (that weren’t included in the
training dataset). This work also had substantial influence on future learning-
based grasping and manipulation approaches.
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5.4.2 Exploiting Simulation and a Database of Objects to Predict Grasp Success23
23 J. Mahler et al. “Dex-Net 1.0: A cloud-
based network of 3D objects for robust
grasp planning using a Multi-Armed
Bandit model with correlated rewards”.
In: IEEE International Conference on
Robotics and Automation (ICRA). 2016,
pp. 1957–1964

The Dex-Net approach for learning to grasp is another supervised learning ap-
proach that relies on simulations to generate training data. Specifically this ap-
proach assumes a parallel jaw gripper and contains a large (> 10, 000) database
of 3D object models. For each model in the Dex-Net database, the simulator
uses analytical (model-based) techniques to evaluate a large number of potential
grasps for probability of success24. This is accomplished by empirically sam- 24 The Dex-Net database consists of 2.5

million tested grasps.pling a grasp some number of times and determining (through simulation) the
percentage that result in force closure25. The database of objects and poten- 25 There is simulated uncertainty in

object and gripper pose, as well as the
surface friction.

tial grasps can then be used to train a model to predict the probability of force
closure for a new grasp/object.

In practice a number of candidate grasps are generated for a given (poten-
tially novel) object, are evaluated by the learned model to predict probability of
success, and then a multi-armed bandit26 approach is used to select which grasp

26 A fundamental reinforcement learn-
ing problem focused on uncertain
decision making.

to take. The learned models are then updated based on the outcome of the ac-
tion for continuous improvement. This work showed that leveraging the prior
information from the object database can significantly improve grasping for
new objects (even if they are not in the database), and later improvements have
enhanced the approach even further.

Figure 5.15: Dex-Net grasps
are parameterized by the cen-
troidal position of the gripper
x and the approach direction v,
Mahler et al. (2016).

5.4.3 Learning to Grasp Through Real-World Trial-and-Error27

27 S. Levine et al. “Learning hand-
eye coordination for robotic grasping
with deep learning and large-scale
data collection”. In: The International
Journal of Robotics Research 37.4-5 (2018),
pp. 421–436

Instead of leveraging simulators to generate synthetic data this work uses hard-
ware experiments to generate real-world data. The resulting experiences are
then used in a self-supervised approach to learn an end-to-end framework to
grasp objects in cluttered environments. One of the reasons this work is signifi-
cant is the lack of assumptions that are made: 3D object models are not needed,
only RGB images are required, it does not use contact models or simulated data,
no physical object information is used, and no hand-engineered path/grasp
planning algorithms are used. Instead the system just learns through trial-and-
error, exploring approaches to actuate the robot arm and gripper that eventually
lead to robust grasps.

This approach showed impressive results over hand-designed or open-loop
approaches, but at the cost that it took six months and a large number of robots
to generate enough training data.

5.5 Learning-Based Approaches to Manipulation

The previous sections of this chapter have focused on the problem of grasp-
ing, but many robotic manipulation tasks involve more than simply grasping
an object. For example it is possible to manipulate objects without force clo-
sure grasps, such as by pushing the object28. Many manipulation tasks that do 28 Not only is it possible, but may be

necessary if the object is too large or
heavy to grasp.

involve grasping also involve other complex steps, such as using the grasped
object to manipulate other objects (e.g. hitting a hammer with a nail) or placing
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the object in a certain position (e.g. inserting a key into a lock). This section will
introduce at a high-level some interesting and foundational problems in ma-
nipulation, and present the high-level ideas found in some recent research on
learning-based approaches to solving them.

5.5.1 Planar Pushing

Planar pushing is a fundamental manipulation task where the goal is to control
the pose of an object in a 2D setting by only using “pushing” contacts. While
the contact point models used for grasping can also be applied in this problem,
the interaction of the object and the surface must also be accounted for.

Similar to the physics-based contact models for grasping, physics-based mod-
els can also be developed to predict the sliding interactions between the ob-
ject and the surface. In particular, the concept of a friction limit surface29 can be 29 I. Kao, K. Lynch, and J. Burdick.

“Contact Modeling and Manipula-
tion”. In: Springer Handbook of Robotics.
Springer, 2016, pp. 931–951

used to model the interaction between the object and the surface. The friction
limit surface is a boundary in wrench space that separates wrenches that the
surface can apply to the object through friction and those it can’t. The part of
the wrench space enclosed by this surface will contain the origin (i.e. the zero
wrench), and most importantly whenever the object is slipping the wrench ap-
plied on the object lies on the friction limit surface. This surface can be determined
numerically if the coefficient of friction, the contact area, and the pressure dis-
tribution are known. For simplicity, it is common to approximate this surface as
an ellipsoid. To summarize:

1. If an external wrench applied to the object is within the region of the wrench
space enclosed by the friction limit surface, friction between the object and
the surface will cause the object to remain motionless.

2. If the part slides quasistatically30, the pushing wrench must lie on the fric- 30 Assumption that the part moves
slowly enough that inertial effects are
negligible.

tion limit surface and the motion (velocity) of the object can be determined.

The friction limit surface provides the foundation for a physics-based model
that predicts how an object will slide across a surface under external contact
forces. Such a model could be used to design a controller (e.g. with model pre-
dictive control) for planar pushing tasks. However, these physics-based models
are based on approximations and assumptions that may impact their accuracy Assumptions in physics-based pushing

model: ellipsoidal friction limit surface,
coulomb friction, perfectly planar
object/surface, rigid body object,
physical properties of object are known.

or applicability to real problems. In fact some studies have been performed to
evaluate the accuracy of physics-based pushing models31.

31 K. Yu et al. “More than a million ways
to be pushed. A high-fidelity exper-
imental dataset of planar pushing”.
In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).
2016, pp. 30–37

While physics-based controllers such as model predictive control can handle
some uncertainty via feedback control mechanisms, it is still desirable to im-
prove the modeling accuracy and eliminate assumptions requiring knowledge
of the parameters that define the models32. Learning-based approaches are one

32 For example the physical properties
of the object and surface.

possible solution to some of these challenges, where real-world data can be used
to either completely replace or augment the physics-based models.

In fact, recent work33 has compared the use of physics-based, hybrid (physics
33 A. Kloss, S. Schaal, and J. Bohg.
“Combining learned and analytical
models for predicting action effects
from sensory data”. In: The International
Journal of Robotics Research (2020)

+ learning), and learning-based models for planar pushing tasks. In this work
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the hybrid model learned a mapping from sensor measurements (RGB images)
into a set of parameters that were required for the physics-based motion model
and the learning-based model just directly learned a single neural network for
mapping sensor measurements to motion predictions directly. As might be
expected the hybrid approach achieved better generalization by leveraging the
physics-based model’s structure, while the learning-based approach overfit to
the training data34. 34 This is a classic example of bias-

variance tradeoff in modeling.

5.5.2 Contact-Rich Manipulation Tasks

Many 6D manipulation problems involve grasping an object and then using it
to physically interact with the environment. Classic everyday examples include
hitting a nail with a hammer, inserting a key into a lock, and plugging a cord
into an electrical outlet. These types of contact-rich tasks tasks typically rely on
multiple different sensing modalities including haptic and visual feedback. Con-
sider the task of inserting a key into a lock: without sight it would be challeng-
ing to correctly position the key and without tactile sensing (e.g. force/torque
sensing) it would be challenging to know when the key is perfectly aligned and
can be inserted.

However, it can be quite challenging to integrate multiple sensing modalities
toward a common task, especially when the sensing modalities are so different
and since manipulation tasks can be quite complex. One approach may be to
individually develop systems for different subtasks and manually find a com-
mon interface to stitch them together, however this could be challenging from
a system engineering perspective. An alternative is to use machine learning
techniques to automatically integrate the sensing modalities.

One learning-based approach to this problem is to design an end-to-end
system that takes as input all sensor data streams and outputs actions for the
robot to execute the task. However, when implemented in a naive way (e.g.
a single massive neural network architecture) end-to-end approaches can be
data inefficient. An alternative is to add additional structure to the learning-
based approach by leveraging some insights into the problem, similar to how
the physics-based motion model was used in the learning-based planar pushing
example discussed in the previous section.

A structured approach for manipulation tasks relying on multiple sensing
modalities is introduced by Lee et al.35. In this work an end-to-end system 35 M. Lee et al. “Making Sense of Vision

and Touch: Self-Supervised Learning
of Multimodal Representations for
Contact-Rich Tasks”. In: International
Conference on Robotics and Automation
(ICRA). 2019, pp. 8943–8950

that takes sensor data streams as input and outputs robot actions is split into
two parts: first transforming the multi-modal sensor data streams into a low-
dimensional feature representation that contains task relevant information36,

36 This is accomplished by training an
autoencoder network.

and then using these features as the input to a learned policy that generates
robot actions. In other words, the insight is that the learning process can be
made more efficient by first learning a way to compress and summarize all of
the sensor data, and then learning how to use the summarized information
to generate a good policy. Another benefit to this approach is that the sensor
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data encoder can generalize more effectively to new tasks, meaning that only the
policy portion needs to be retrained!


