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Today’s itinerary
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•Stats/ML review

•Neural network basics

•Convolutional neural networks

•Robotic applications
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Efficient feature extraction
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vs.

If we know the input is image data, we can assume some spatial locality 
è weight sharing

CIFAR-10
32x32x3

Inception-v3
299x299x3
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Convolutional neural networks (CNN)
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Traditionally consist of 4 types of layers:
• Convolutional layers (CONV)
• Nonlinearity layers (RELU)
• Pooling layers (POOL)
• Fully-connected layers (FC)

LeNet
(1998)
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Convolution layer
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Convolution layer
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Convolution layer
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Convolution layer

AA 274B | Lecture 6 81/29/24



Convolution layer
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Convolution Layer Visualization
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http://cs231n.github.io/convolutional-networks/
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Feature hierarchy
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Pooling layer
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Types of pooling:
• MAX pooling
• MEAN pooling

As we move higher up the 
feature “food chain” we 
can save ourselves some 
computational effort by 
lowering the resolution

1/29/24



Fully connected layer
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We’ve seen this one before!

Image “summary 
vector” with all of

the redundant 
pixel info boiled 

out

Linear classifier 
(softmax)
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Putting it all together – CNN
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http://cs231n.stanford.edu/
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Live Demo - Inner Workings of a CNN

https://adamharley.com/nn_vis/cnn/3d.html

There’s also a 2D version: 
https://adamharley.com/nn_vis/cnn/2d.html
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https://adamharley.com/nn_vis/cnn/3d.html
https://adamharley.com/nn_vis/cnn/2d.html


Classification showdown

16

vs.
r(f � g)(x) = ((Dg)(x))T (rf)(g(x))

Who wins?
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End-to-end learning wins!

17

Disclaimer: hand-crafted features may still be 
the right choice for your niche application

AlexNet (2012)
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Modern architectures (deeper and deeper)
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Modern architectures (deeper and deeper)
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Inception-v3 (2016)
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Even more modern architectures

AA 274B | Lecture 6 20

Transformer (2017) Vision Transformer (2020)
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Today’s itinerary
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•Stats/ML review

•Neural network basics

•Convolutional neural networks

•Robotic applications
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Object localization and detection
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Object localization
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Instead of outputting only a class (with associated loss function),
also regress on 4 numbers defining the edges of a bounding box
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Localization and detection
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Instead of outputting only a class (with associated loss function),
also regress on 4 numbers defining the edges of a bounding box
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Object detection
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Sliding window: using a classifier as the basis for a detector
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Object detection

AA 274B | Lecture 6 26

Sliding window: using a classifier as the basis for a detector
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Object detection
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Sliding window: using a classifier as the basis for a detector
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Object detection
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Sliding window: using a classifier as the basis for a detector
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Object detection – sliding window
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Overfeat
(Sermanet
et al. 2014)
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Object detection – more efficient approaches
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“Proposal” method to 
identify “blobby” regions 

of interest
(could be another NN)

Two-headed 
classifer/bounding box 

regressor
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Object detection – more efficient approaches
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Robotics – need for speed!
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MobileNets (2017)
Tiny YOLO (2017)

Inception-ResNet-v2
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End-to-end: from pixels to motor commands
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DAVE-2 (NVIDIA 2016)

Somewhat less scary:
https://www.youtube.com/watch?v=HJ58dbd5g8g
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End-to-end: from sensors+language to action
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SayCan (Google 2022)
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Information Representations

Pr
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Perception

3D semantic occupancy 
network

OccNet (ICCV ‘23), Tesla

BEV occupancy flow & trajectory 
prediction

UniAD (CVPR ’23 best paper)

Choice of 
modules

Choice of 
representations

Output representations Input representations

Coupled through module placement!
Compounded complexity
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Tools of the trade

AA 274B | Lecture 6 36

• Software packages for automatic 
differentiation/gradient computation
• Caffe (old)
• Torch (old)
• Theano (old)
• TensorFlow (Google, Heavyweight #1)
• PyTorch (Facebook, Heavyweight #2)
• MXNet/Chainer/… (Others, better at 

some things for specific applications)

• Specify an abstract computation 
graph (inputs and outputs of NN 
equations); software does the rest!

TensorFlow: a lot of chain rule in this picture
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Lots of stuff left out
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• Generative vs. discriminative models
• Train/validation/test sets
• Learning rate and other hyperparameter tuning
• Recurrent neural networks for sequential data (e.g., videos)
• Reinforcement learning and ML outside of purely visual recognition-

focused tasks

Consider STATS216, CS229, CS231n, CS224n, CS331b to learn more!
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Next time
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