Principles of Robot Autonomy II

Learning-based Approaches to Grasping and Manipulation

Jeannette Bohg

Learning Outcome for next four Lectures

2/7/24

3

Grasp Force Optimization

Fig. 3. Sequence of significant configurations of the bottle and of the forces during task execution with n=10.

Figure adapted from A Grasping Force Optimization Algorithm for Multiarm Robots With Multifingered Hands. Lipiello et al. Transactions on Robotics. 2013

AA 274B | Lecture 8

Equilibrium Constraints – Force Closure

Compact notation

• Contact force vector $f \in \mathbf{R}^{3M}$

 $f=(f^{(1)},\ldots,f^{(M)})$

• Contact Matrices $G_i \in \mathbf{R}^{6x3}$

•
$$G_i = \frac{Q^{(i)}}{S^{(i)}Q^{(i)}}, i = 1 \dots M$$

- Grasp matrix
 - $G = [G_1, \dots, G_M] \in \mathbf{R}^{6x3M}$
- External Wrench $\omega^{ext} = (f^{ext}, \tau^{ext})$
- Equilibrium conditions
 - $Gf + \omega^{ext} = 0$

Following Approach in Fast Computation of Optimal Contact Forces by Stephen P. Boyd and Ben Wegbreit. Transactions on Robotics. 2007.

AA 274B | Lecture 8

Convex Optimization Problem

 Second-order cone program because C_1 friction cones are quadratic. $\wedge \tau_{out}$ **W**_{1.1} • Objective function: d_1 $F^{\max} = \max\{\|f^{(1)}\|, \dots, \|f^{(M)}\|\}$ $= \max_{i=1,\dots,M} \sqrt{f_x^{(i)2} + f_y^{(i)2} + f_z^{(i)2}}$ $W_{1.2}$ **f**_{1,2} f_{1,1} +f_y $f_{3,1}$ f_{3,2} Optimization problem: • minimize F^{max} W_{3,2} • subject to $f^{(i)} \in K_i$, $i = 1 \dots M$ d₃ $Gf + \omega^{ext} = 0$ 'W3 1 C_3

Following Approach in Fast Computation of Optimal Contact Forces by Stephen P. Boyd and Ben Wegbreit. Transactions on Robotics. 2007.

•

AA 274B | Lecture 8

Ψτ_{in}

COM

Today's itinerary

- Modeling Push/Non-Prehensile Manipulation
- Learning-based Approaches to
 - Grasping
 - Planar Pushing
 - Manipulation (Guest Lecture Feb 21 by Quan Vuong from Google DeepMind)

For a Deeper Dive into Grasping and Manipulation

• CS326 – Topics in Advanced Robotic Manipulation – Fall 2024

Case Study – Planar Pushing

Reorient parts - Mason 1986

Transport large objects - Meriçli 2015

Push-grasp under clutter - Dogar 2010

Track object **pose** - Koval 2015

 $\underset{u(t)}{\operatorname{arg min}} \quad h(x(T)) + \int_0^T g(x(t), u(t)) \, dt$

Stable Pushes to manoeuvre an object around obstacles. Adopted from Chapter 37, Fig 37.11 in Springer Handbook of Robotics.

Modeling Planar Pushing

Friction limit surface: describes friction forces occurring when part slides over support.

When pushed with a wrench within the limit surface: **no motion.**

For **quasi-static pushing**: wrench on the limit surface; object twist normal to limit surface where **twist** = linear and angular velocity: $t_i = (v_x^i, v_y^i, \omega_z^i)$

If **object translates without rotation** the friction force magnitude μmg where μ = friction coefficient, m = object mass, g = gravitational acceleration

tion between wrench cone. limit surface and unit twist sphere. Adopted

Relation between wrench cone, limit surface and unit twist sphere. Adopted from Chapter 37, Fig 37.10 in Springer Handbook of Robotics.

Modeling Planar Pushing –Voting theorem

How will the object rotate? Adopted from Chapter 37, Fig 37.12 in Springer Handbook of Robotics.

Combining learned and analytical models for predicting action effects from sensory data . Kloss et al. 2020. IJRR 2020. K. M. Lynch, H. Maekawa, and K. Tanie, "Manipulation and active sensing by pushing using tactile feedback." in *IROS*, 1992.

AA 274B | Lecture 9

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

More than a Million Ways to Be Pushed.

A High-Fidelity Experimental Dataset of Planar Pushing

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez

Computer Science and Artificial Intelligence Lab & Mechanical Engineering Department, MIT

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

(b)

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

AA 274B | Lecture 9

More than a Million Ways to Be Pushed.

A High-Fidelity Experimental Dataset of Planar Pushing

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez

Computer Science and Artificial Intelligence Lab & Mechanical Engineering Department, MIT

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.

AA 274B | Lecture 9

 $\underset{u(t)}{\operatorname{arg min}} \quad h(x(T)) + \int_0^T g(x(t), u(t)) \, dt$

Suggested Reading

- More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing by Peter Yu, Maria Bauza et al. IROS 2016.
- Maria Bauza and Alberto Rodriguez. A probabilistic data-driven model for planar pushing. ICRA 2017

What are common assumptions?

How do we generate a grasp?

Grasp Evaluation

Offline

Offline database with grasps linked to 3D objects

Perception

Motion Planning

Online

How do we execute a grasp?

Data-Driven Approaches to Grasping

Detecting 2D Grasping Points

Bohg and Kragic. Learning Grasping Points with Shape Context. Robotics and Autonomous Systems. 2010

Grasp Point Detection as a Classification Problem

Saxena et al. Robotic Grasping of Novel Objects. NeurIPS 2006

From 2D Grasping Points to 6D Grasp Pose

H

Robotic Grasping of Novel Objects using Vision. Saxena et al. IJRR 2008.

Grasping previously unseen objects using only 2D images without 3D meshes

Supervised learning pipeline

TRAINING

Data collection

We could collect real images...

...but labeling them is cumbersome / prone to errors.

Data collection

Solution? Use synthetic data!

2500 images 5 object classes

Realistic rendering using ray tracing.

Enables automatic labeling: random lighting, color, orientation, size...

Supervised learning pipeline

TRAINING

Image preprocessing

RGB -> Y (luma) Cb (chroma) Cr (chroma)

Y: intensity; Cb: **B** - Y; Cr: **R** - Y

Image preprocessing

Edge filters (Y):

Texture filters (Y):

Average filter (Cb/Cr):

6 (edge) + 9 (texture) + 1 (average) * 2 = 17 features per patch

Image preprocessing

Apply filters on :

- 3 different scales for the patch centered at the pixel of interest
- 1 scale for the 24 surrounding patches in a 5x5 window

17 (# features/patch) * (3 + 24) = 459 features per patch of interest

Supervised learning pipeline

Binary classification task

Is a given pixel (u, v) on the image a grasping point (1) or not (0)?

Supervised learning pipeline

TRAINING

2/7/24

Supervised learning pipeline

TRAINING

Hardware setup

5 dof arm

Random object location on uncluttered table top

Evaluation results

1. Synthetic data:

Classification accuracy on unseen images is 94.2% (2D). Accuracy on unseen images after triangulation is higher (3D), mean error 0.84 cm.

2. Real data:

Mean error after triangulation (3D) 1.84 cm. Picked up novel objects 87.8% of the time.

Application task: unloading dishwasher

Added real images + depth measurements

Tested on	Grasp success rate				
Plates	100%				
Bowls	80%				
Mugs	60%				
Wine glass	80%				
Overall	80%				

Conclusion

- Learning-based method
- Only input is 2D images, no 3D mesh model needed
- Generalizes to previously unseen objects
- Cool applications!

Using more sensing modalities and data to learn features and grasp policies

- DexNet 1.0 4.0 Berkeley AutoLab
- Google Arm Farm

"Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection" by Levine et al. IJRR 2017.

"Learning Deep Policies for Robot Bin Picking by Simulating Robust Grasping Sequences" by Mahler and Goldberg. CORL 2017. https://berkeleyautomation.github.io/dex-net

AA 274B | Lecture 9

Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics

" Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

Dataset Generation

" Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

At test time: $\pi_{\theta}(y) = argmax_{u \in C} Q_{\theta}(u, y)$ where y = pointcloud, u = grasp parameters

[&]quot; Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

Video

" Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

AA 274B | Lecture 9

Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, Deirdre Quillen

Problem Statement

End-to-end learn to grasp a wide variety of household objects in clutter using real hardware.

Assumptions

- 3D Model of Object
 - Depth Sensing
 - Wrist Mounted Camera
- Specific Representation of Geometry
- Contact Model
- Simulated Data
- Hand-Annotations
- Hand-Designed Path Planner

RGB Camera

Mounted Over-the-Shoulder

• Camera to Base Calibration

50

So what do we have?

AA 274B | Lecture 9

So what do we have?

+ Time

"Examine to what degree a grasping method based entirely on learning from raw autonomously collected data can scale to complex and diverse grasp scenarios"

Uncertainty

- Using real hardware leads to a ton of uncertainty
 - Object
 - Geometry & Pose
 - Material Properties
 - weight, frictional properties, deformability
 - Robot
 - End-Effector Pose
 - Wear and Tear
- Accentuated by lack of explicit hand-eye-coordination

Dataset

Two Rounds of Self-Supervised Data Collection

1.7M Grasp Attempts

Self-Supervised Data Collection: Phase 1

Self-Supervised Data Collection: Phase 2

Grasping Algorithm

Grasp Prediction Network

Continuous Servoing: Cross-Entropy Method

Continuous Servoing

Video

Overall Performance: Failure Rate Results

Table 1. Failure rates of each method for each evaluation condition. When evaluating without replacement, we report the failure rate on the first 10, 20, and 30 grasp attempts, averaged over 4 repetitions of the experiment. N indicates the number of grasps used to compute each value. The experiments without replacement were repeated four times.

Without replacement	First 10 $(N = 40)$	First 20 $(N = 80)$	First 30 $(N = 120)$	Strugg	gled with	n clutter		
Random Hand-designed Open loop Our method	67.5% 32.5% 27.5% 10.0%	70.0% 35.0% 38.7% 17.5%	72.5% 50.8% 33.7% 17.5%		Un ol	able to rea ojects mov	nct to ring	
With replacement	Failure rate (N	T = 100)				Perform: few	s better a er assum	nd requires
Random Hand-designed Open loop Our method	69% 35% 43% 20%							

Discussion

- End-to-end learning can achieve good results with few assumptions
- It requires a lot of data to achieve good performance
 - More tolerable the more **generalizable**
 - Variation in hardware was small-scale

Conclusion: Two Approaches

	Dex-Net	Arm Farm			
Setup	Single object in simulation	Bin of objects in real world			
Number Data Points	13,000 objects, 2.5M grasps	1,100 objects, 1.7M grasps			
Data Point(object, grasp, label = probability of success		(Image, motor command, label = ground truth success)			
Diversity of Objects Rigid, Opaque		Rigid & deformable, opaque & translucent			
Object Representation	3D Mesh Model	None			
Data Collection Method	Generated in simulation	Self-supervised on real hardware			
Type of Learning	Deep learning, reinforcement learning	End-to-end deep learning			

Still Missing

Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes. Sundermeyer et al. ICRA 2021

Suggested Reading

- Data-Driven Grasp Synthesis A survey by Bohg et al. TRO 2014
- Robotic Grasping of Novel Objects by Saxena et al. NeurIPS 2006.
- Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics by Mahler et al.. RSS 2017. <u>https://berkeleyautomation.github.io/dex-net</u>
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection by Levine et al. IJRR 2017.

" Dex-Net 2.0: Deep Learning to Pla Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

Next time

• Interactive Perception