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Learning Outcome for next four Lectures
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Modeling and Evaluating Grasps

Modeling and Executing Manipulation

Apply Learning to Grasping and Manipulation

Use Manipulation to Perceive better



Why are friction cones triangles (2D) or cones (3D)?
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Grasp Force Optimization

2/7/24
4

Figure adapted from A Grasping Force Optimization Algorithm for Multiarm Robots With Multifingered Hands. Lipiello et al. Transactions on Robotics. 2013
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Equilibrium Constraints – Force Closure

• Contact force vector 𝑓 ∈ 𝑹!"

• Contact Matrices 𝐺# ∈ 𝑹$%!

• 𝐺! =
𝑄(!)

𝑆(!)𝑄(!)
, 𝑖 = 1 …𝑀

• Grasp matrix  
• 𝐺 = 𝐺$, … , 𝐺% ∈ 𝑹&'(%

• External Wrench 𝜔&%' = 𝑓&%' , 𝜏&%'

• Equilibrium conditions
• 𝐺𝑓 + 𝜔)'* = 0
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Compact notation

Following Approach in Fast Computation of Optimal Contact Forces by Stephen P. Boyd and Ben Wegbreit. Transactions on Robotics. 2007.
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Convex Optimization Problem
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• Second-order cone program because 
friction cones are quadratic.

• Objective function:

• Optimization problem:
• 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐹+,'

• 𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝑓(!) ∈ 𝐾! , 𝑖 = 1…𝑀
•                      𝐺𝑓 + 𝜔)'* = 0	

Fmax = max{kf (1)k, . . . , kf (M)k}

= maxi=1,...,M

q
f (i)2
x + f (i)2

y + f (i)2
z

Following Approach in Fast Computation of Optimal Contact Forces by Stephen P. Boyd and Ben Wegbreit. Transactions on Robotics. 2007.
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Today’s itinerary

• Modeling Push/Non-Prehensile Manipulation
• Learning-based Approaches to
• Grasping
• Planar Pushing 
• Manipulation (Guest Lecture Feb 21 by Quan Vuong from Google DeepMind)
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For a Deeper Dive into Grasping and 
Manipulation
• CS326 – Topics in Advanced Robotic Manipulation – Fall 2024 
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Case Study – Planar Pushing
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Logic Geometric Programming
Toki Migimatsu, Jeannette Bohg

Abstract—TODO

I. INTRODUCTION

TODO

II. RELATED WORK

TODO

III. PROBLEM STATEMENT

A. General LGP Formulation

An LGP is comprised of two subproblems: a STRIPS
[1] problem specified using first-order logic that operates in
a discrete domain, and a nonlinear trajectory optimization
problem that operates in a continuous domain. The goal of
an LGP is first to find a sequence of K discrete actions a1:K
that results in a discrete state trajectory s1:K such that the
final state sK satisfies a set of goal propositions g. Second,
the LGP needs to find a continuous control input u(t) across
time t = [0, T ] such that the resulting state trajectory x(t)
satisfies the requirements of the discrete states s1:K . This can
be framed as the following optimization problem:

arg min
a1:K , u(t)

h(x(T )) +

Z T

0
g(x(t), u(t)) dt

subject to

x(0) = xinit, sK ✏ g,

ẋ(t) = fpath(x(t), u(t), sk(t)) t 2 [0, T ],

ẋ(tk) = fswitch(x(tk), u(tk), ak) k = 1, . . . ,K,

sk 2 succ(sk�1, ak) k = 1, . . . ,K

(1)

Here, fpath describes the continuous system dynamics,
which change depending on the discrete state sk(t) at a given
timestep t. An example of this dependency is when a robot
manipulator throws a ball—while the manipulator is holding
the ball, the ball’s trajectory is determined by the manipulator’s
dynamics, but after release, it follows unconstrained projectile
dynamics. fswitch describes the instantaneous system dynam-
ics at timesteps tk when the discrete action ak changes. An
example of such a constraint is when a robot uses a stick
to hit a ball—at the time of impact, the ball’s acceleration
is determined by the instantaneous impulse imparted by the
stick.

In STRIPS planning, each action ak defines a set of pre-
conditions that must be true before the action is performed
and a set of postconditions that will be true after the action is
performed. These discrete transition dynamics are encoded in
the succ constraint using first-order logic.

Dept. of Computer Science, Stanford University

While the LGP could be solved as a Mixed Integer Program,
the combined complexity of STRIPS planning and nonlinear
optimal control make it intractable to solve exactly. Toussaint
et al. [2] propose an algorithm that approximately solves
LGPs by breaking it into a multi-part process. First, a tree
search is performed in the STRIPS domain to find a candidate
action skeleton a1:K . Next, the action skeleton spawns a
trajectory optimization problem whose constraints are defined
by the action skeleton and corresponding symbolic states. This
trajectory optimization is first solved over key timesteps tk for
k = 1, . . . ,K, and then subsequently over the full trajectory
t = [0, T ], and second, the action skeleton then spawns a
trajectory optimization problem whose constraints are defined
by the action skeleton and corresponding symbolic states. This
optimization will either produce a full trajectory x1:T with
an objective score, or fail to find a solution, which means
the candidate action skeleton is not physically feasible. The
tree search continues until the user decides to terminate, at
which point the trajectory with the smallest objective score
gets returned.

In the following subsections, we will examine the trajectory
optimization portion of the LGP in greater detail, first present-
ing the joint space formulation proposed by Toussaint et al.
[2], and then introducing a reformulation of the problem in
Cartesian space.

B. Joint Space Formulation

In [3], the trajectory optimization subproblem is formulated
as a k-order Markov Optimization (KOMO) problem, which
discretizes time and represents time derivatives of position (up
to kth order) with their discrete equivalents (e.g., velocities
ẋt = xt�xt�1 and accelerations ẍt = xt�2xt�1+xt�2). The
state space and control input is defined to be the normal robot
configuration q extended with an extra 6-dof free body joint
for each object the robot is manipulating at a given timestep.
We represent this augmented configuration with q̄t 2 Rn+6mt ,
where mt is the number of objects the robot is manipulating
at timestep t. Note that the size of q̄t changes with t. The
constraints fpathk(t)

and fswitchk are determined by the action
skeleton proposed by the STRIPS planner.

arg min
q̄0:T

h(q̄T ) +
TX

t=0

g(q̄t�2:t)

subject to q̄�2:0 = q̄init,

fpathk(t)
(q̄�2:t) = 0 t = 1, . . . , T,

fswitchk(q̄�2:tk) = 0 k = 1, . . . ,K

(2)

The objective term g(q̄t�2:t) is a function that can take
into account the position, velocity, and acceleration at each

Stable Pushes to manoeuvre an object around obstacles.  Adopted from  
Chapter 37, Fig 37.11 in Springer Handbook of Robotics. 
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Modeling Planar Pushing

2/7/24 10

Relation between wrench cone, limit surface and unit twist sphere. Adopted 
from  Chapter 37, Fig 37.10 in Springer Handbook of Robotics. 

Friction limit surface: describes friction forces occurring when 
part slides over support.

When pushed with a wrench within the limit surface: no 
motion.

For quasi-static pushing: wrench on the limit surface; object 
twist normal to limit surface where twist = linear and angular 
velocity: 𝑡# = (𝑣%# , 𝑣(# , 𝜔)# )

If object translates without rotation the friction force 
magnitude 𝜇𝑚𝑔 where 𝜇 = friction coefficient, 𝑚 = object 
mass, 𝑔 = gravitational acceleration
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Modeling Planar Pushing –Voting theorem
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How will the object rotate? Adopted from  Chapter 37, Fig 37.12 in Springer Handbook of Robotics. 

Combining learned and analytical models for predicting action effects from sensory data . Kloss et al. 2020. IJRR 2020.
K. M. Lynch, H. Maekawa, and K. Tanie, “Manipulation and active sensing by pushing using tactile feedback.” in IROS, 1992.
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Validating Models for Planar Pushing

2/7/24 12

IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
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Validating Models for Planar Pushing
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IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
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Validating Models for Planar Pushing
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IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
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Validating Models for Planar Pushing
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IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
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Toki Migimatsu, Jeannette Bohg
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I. INTRODUCTION

TODO

II. RELATED WORK

TODO

III. PROBLEM STATEMENT

A. General LGP Formulation

An LGP is comprised of two subproblems: a STRIPS
[1] problem specified using first-order logic that operates in
a discrete domain, and a nonlinear trajectory optimization
problem that operates in a continuous domain. The goal of
an LGP is first to find a sequence of K discrete actions a1:K
that results in a discrete state trajectory s1:K such that the
final state sK satisfies a set of goal propositions g. Second,
the LGP needs to find a continuous control input u(t) across
time t = [0, T ] such that the resulting state trajectory x(t)
satisfies the requirements of the discrete states s1:K . This can
be framed as the following optimization problem:

arg min
a1:K , u(t)

h(x(T )) +

Z T

0
g(x(t), u(t)) dt

subject to

x(0) = xinit, sK ✏ g,

ẋ(t) = fpath(x(t), u(t), sk(t)) t 2 [0, T ],
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Here, fpath describes the continuous system dynamics,
which change depending on the discrete state sk(t) at a given
timestep t. An example of this dependency is when a robot
manipulator throws a ball—while the manipulator is holding
the ball, the ball’s trajectory is determined by the manipulator’s
dynamics, but after release, it follows unconstrained projectile
dynamics. fswitch describes the instantaneous system dynam-
ics at timesteps tk when the discrete action ak changes. An
example of such a constraint is when a robot uses a stick
to hit a ball—at the time of impact, the ball’s acceleration
is determined by the instantaneous impulse imparted by the
stick.

In STRIPS planning, each action ak defines a set of pre-
conditions that must be true before the action is performed
and a set of postconditions that will be true after the action is
performed. These discrete transition dynamics are encoded in
the succ constraint using first-order logic.

Dept. of Computer Science, Stanford University

While the LGP could be solved as a Mixed Integer Program,
the combined complexity of STRIPS planning and nonlinear
optimal control make it intractable to solve exactly. Toussaint
et al. [2] propose an algorithm that approximately solves
LGPs by breaking it into a multi-part process. First, a tree
search is performed in the STRIPS domain to find a candidate
action skeleton a1:K . Next, the action skeleton spawns a
trajectory optimization problem whose constraints are defined
by the action skeleton and corresponding symbolic states. This
trajectory optimization is first solved over key timesteps tk for
k = 1, . . . ,K, and then subsequently over the full trajectory
t = [0, T ], and second, the action skeleton then spawns a
trajectory optimization problem whose constraints are defined
by the action skeleton and corresponding symbolic states. This
optimization will either produce a full trajectory x1:T with
an objective score, or fail to find a solution, which means
the candidate action skeleton is not physically feasible. The
tree search continues until the user decides to terminate, at
which point the trajectory with the smallest objective score
gets returned.

In the following subsections, we will examine the trajectory
optimization portion of the LGP in greater detail, first present-
ing the joint space formulation proposed by Toussaint et al.
[2], and then introducing a reformulation of the problem in
Cartesian space.

B. Joint Space Formulation

In [3], the trajectory optimization subproblem is formulated
as a k-order Markov Optimization (KOMO) problem, which
discretizes time and represents time derivatives of position (up
to kth order) with their discrete equivalents (e.g., velocities
ẋt = xt�xt�1 and accelerations ẍt = xt�2xt�1+xt�2). The
state space and control input is defined to be the normal robot
configuration q extended with an extra 6-dof free body joint
for each object the robot is manipulating at a given timestep.
We represent this augmented configuration with q̄t 2 Rn+6mt ,
where mt is the number of objects the robot is manipulating
at timestep t. Note that the size of q̄t changes with t. The
constraints fpathk(t)

and fswitchk are determined by the action
skeleton proposed by the STRIPS planner.

arg min
q̄0:T

h(q̄T ) +
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t=0

g(q̄t�2:t)

subject to q̄�2:0 = q̄init,
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(q̄�2:t) = 0 t = 1, . . . , T,
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The objective term g(q̄t�2:t) is a function that can take
into account the position, velocity, and acceleration at each

Validating Models for Planar Pushing
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IROS 2016, "More than a Million Ways to Be Pushed: A High-Fidelity Experimental Dataset of Planar Pushing" by Peter Yu, Maria Bauza et al.
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Suggested Reading

• More than a Million Ways to Be Pushed: A High-Fidelity Experimental 
Dataset of Planar Pushing by Peter Yu, Maria Bauza et al. IROS 2016.
• Maria Bauza and Alberto Rodriguez. A probabilistic data-driven model 

for planar pushing. ICRA 2017
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What are common assumptions?
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How do we generate a grasp?
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Offline database 
with grasps linked 

to 3D objects

Motion Planning

Grasp Evaluation

'DWD�FROOHFWLRQ
6ROXWLRQ"�8VH�V\QWKHWLF�GDWD�

5HDOLVWLF�UHQGHULQJ�XVLQJ�UD\�WUDFLQJ�
(QDEOHV�DXWRPDWLF�ODEHOLQJ��UDQGRP�OLJKWLQJ��FRORU��RULHQWDWLRQ��VL]H���

�����LPDJHV
��REMHFW�FODVVHV

Perception

Offline Online
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How do we execute a grasp?

2/7/24

Grasp Force Optimization

6R�ZKDW�GR�ZH�KDYH"�

8QGHUDFWXDWHG�WR�FRQIRUP�
WR�REMHFW�JHRPHWU\

Top-Down & Open-Loop

20

Acquiring a grasp + Closed Loop
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Data-Driven Approaches to Grasping

2/7/24 21

Transactions on Robotics 2014, ”Data-Driven Grasp Synthesis – A survey" by Bohg et al.

Covered up till now

This lecture
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Detecting 2D Grasping Points

Bohg and Kragic. Learning Grasping Points with Shape Context. Robotics and Autonomous Systems. 2010



Grasp Point Detection as a Classification Problem

Feature

Grasp Success?

Supervised 
Learning

Saxena et al. Robotic Grasping of Novel Objects. NeurIPS 2006



From 2D Grasping Points to 6D Grasp Pose

Feature

Grasp Success?
Grasp Pose?



Robotic Grasping of Novel Objects using 
Vision. Saxena et al. IJRR 2008.
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang
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6XSHUYLVHG�OHDUQLQJ�SLSHOLQH

,QSXW�
/DEHOHG��'�LPDJHV�

Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

'DWD�FROOHFWLRQ
:H�FRXOG�FROOHFW�UHDO�LPDJHV«

���EXW�ODEHOLQJ�WKHP�LV�FXPEHUVRPH���SURQH�WR�HUURUV�
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

'DWD�FROOHFWLRQ
6ROXWLRQ"�8VH�V\QWKHWLF�GDWD�

5HDOLVWLF�UHQGHULQJ�XVLQJ�UD\�WUDFLQJ�
(QDEOHV�DXWRPDWLF�ODEHOLQJ��UDQGRP�OLJKWLQJ��FRORU��RULHQWDWLRQ��VL]H���

�����LPDJHV
��REMHFW�FODVVHV
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

6XSHUYLVHG�OHDUQLQJ�SLSHOLQH

3UHSURFHVVLQJ
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

,PDJH�SUHSURFHVVLQJ

5*%��!�<��OXPD��&E��FKURPD��&U��FKURPD�

<��LQWHQVLW\��&E��%���<��&U��5���<

AA 274B | Lecture 9



2/7/24 31

Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

,PDJH�SUHSURFHVVLQJ
(GJH�ILOWHUV��<��

7H[WXUH�ILOWHUV��<��

$YHUDJH�ILOWHU��&E�&U��

���HGJH�������WH[WXUH�������DYHUDJH����� �

���IHDWXUHV�SHU�SDWFK
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

,PDJH�SUHSURFHVVLQJ

������IHDWXUHV�SDWFK������������ �

����IHDWXUHV�SHU�SDWFK�
RI�LQWHUHVW

$SSO\�ILOWHUV�RQ��
� ��GLIIHUHQW�VFDOHV�IRU�WKH�SDWFK�FHQWHUHG�

DW�WKH�SL[HO�RI�LQWHUHVW
� ��VFDOH�IRU�WKH����VXUURXQGLQJ�SDWFKHV�

LQ�D��[��ZLQGRZ

�

�
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

6XSHUYLVHG�OHDUQLQJ�SLSHOLQH
/RJLVWLF�UHJUHVVLRQ
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

%LQDU\�FODVVLILFDWLRQ�WDVN
,V�D�JLYHQ�SL[HO��X�Y��RQ�WKH�LPDJH�D�JUDVSLQJ�SRLQW�����RU�QRW����"

'LVWULEXWLRQ�SDUDPHWHU

AA 274B | Lecture 9



2/7/24 35

Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

%LQDU\�FODVVLILFDWLRQ�WDVN
3UHGLFWLRQ�WLPH�

+RZ�OLNHO\�LV�SL[HO��X�Y��RQ�LPDJH�&�
D�JUDVSLQJ�SRLQW"

/HDUQHG�
SDUDPHWHU

)HDWXUHV�RI�WKH�SDWFK�
FHQWHUHG�RQ��X�Y�
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

6XSHUYLVHG�OHDUQLQJ�SLSHOLQH

�'��!��'
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

�'��!��'

3L[HO�LV�QRW�D�JUDVSLQJ�SRLQW 1R�JULG�FHOOV�DORQJ�WKH�UD\�SDVVLQJ�WKURXJK�WKH�
SL[HO�FRQWDLQ�D�JUDVSLQJ�SRLQW

/LQN��'�WR��'�LQWXLWLYHO\�
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

6XSHUYLVHG�OHDUQLQJ�SLSHOLQH

7HVW�UHVXOWV
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

+DUGZDUH�VHWXS

��GRI�DUP 5DQGRP�REMHFW�ORFDWLRQ�RQ�XQFOXWWHUHG�WDEOH�WRS
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

(YDOXDWLRQ�UHVXOWV
�� 6\QWKHWLF�GDWD�

&ODVVLILFDWLRQ�DFFXUDF\�RQ�XQVHHQ�LPDJHV�LV���������'���
$FFXUDF\�RQ�XQVHHQ�LPDJHV�DIWHU�WULDQJXODWLRQ�LV�KLJKHU���'���PHDQ�HUURU������
FP�

�� 5HDO�GDWD�
0HDQ�HUURU�DIWHU�WULDQJXODWLRQ���'�������FP�
3LFNHG�XS�QRYHO�REMHFWV�������RI�WKH�WLPH�
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

$SSOLFDWLRQ�WDVN��XQORDGLQJ�GLVKZDVKHU
$GGHG�UHDO�LPDJHV���GHSWK�PHDVXUHPHQWV
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Victor Zhang

&RQFOXVLRQ�
䙜 /HDUQLQJ�EDVHG�PHWKRG
䙜 2QO\�LQSXW�LV��'�LPDJHV��QR��'�PHVK�PRGHO�QHHGHG
䙜 *HQHUDOL]HV�WR�SUHYLRXVO\�XQVHHQ�REMHFWV
䙜 &RRO�DSSOLFDWLRQV�

• But
• Not very robust in clutter unless trained on this specific scenario
• Hand-designed features in 2D
• Simulated sensory data
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Using more sensing modalities and data to 
learn features and grasp policies
• DexNet 1.0 – 4.0 – Berkeley – AutoLab
• Google Arm Farm 

2/7/24 43

”Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data 
Collection" by Levine et al. IJRR 2017.

”Learning Deep Policies for Robot Bin Picking by Simulating Robust Grasping 
Sequences" by Mahler and Goldberg. CORL 2017. 
https://berkeleyautomation.github.io/dex-net
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Dex-Net 2.0: Deep Learning to Plan Robust Grasps with 
Synthetic Point Clouds and Analytic Grasp Metrics
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” Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net
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Dataset Generation
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” Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net
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Grasp Classification Network
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At test time: 𝜋* 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥+∈- 	𝑄* 𝑢, 𝑦  where y = pointcloud, u = grasp parameters

” Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

,PDJH�SUHSURFHVVLQJ
(GJH�ILOWHUV��<��

7H[WXUH�ILOWHUV��<��

$YHUDJH�ILOWHU��&E�&U��

���HGJH�������WH[WXUH�������DYHUDJH����� �

���IHDWXUHV�SHU�SDWFK
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Video
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” Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Evani Radiya-Dixit & Rachel Thomasson 

/HDUQLQJ�KDQG�H\H�FRRUGLQDWLRQ�IRU�URERWLF�JUDVSLQJ�
ZLWK�GHHS�OHDUQLQJ�DQG�ODUJH�VFDOH�GDWD�FROOHFWLRQ

6HUJH\�/HYLQH��3HWHU�3DVWRU��$OH[�.UL]KHYVN\��-XOLDQ�,EDU]��'HLUGUH�4XLOOHQ
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Evani Radiya-Dixit & Rachel Thomasson 

3UREOHP�6WDWHPHQW

(QG�WR�HQG�OHDUQ�WR�JUDVS�D�ZLGH�YDULHW\�RI�KRXVHKROG�
REMHFWV�LQ�FOXWWHU�XVLQJ�UHDO�KDUGZDUH���
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Slides adopted from CS 326 Fall 2019 -- Tutorial presented by Evani Radiya-Dixit & Rachel Thomasson 

$VVXPSWLRQV
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Contact-GraspNet: Efficient 6-DoF Grasp Generation
in Cluttered Scenes. Sundermeyer et al. ICRA 2021
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Suggested Reading
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• Data-Driven Grasp Synthesis – A survey by Bohg et al. TRO 2014

• Robotic Grasping of Novel Objects by Saxena et al. NeurIPS 2006.

• Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics
by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net

• Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection
by Levine et al. IJRR 2017.

” Dex-Net 2.0: Deep Learning to Pla Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics" by Mahler et al.. RSS 2017. https://berkeleyautomation.github.io/dex-net
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Next time
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• Interactive Perception
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