Principles of Robot Autonomy II

Human-Robot Interaction

intelligent and interactive autonomous systems

Recap

- Imitation learning and inverse RL
- Learning from other sources of data Pairwise Comparisons
- Learning from other sources of data Foundation Models
- Learning from physical feedback
- Learning from gestures
- Learning from sketches
- Data Quality

Types of Imitation Learning

Behavioral Cloning

$$\arg\min_{\theta} \mathbb{E}_{(s,a^*)\sim P^*} L(a^*, \pi_{\theta}(s))$$

Works well when P^* is close to P_{θ}

Direct Policy Learning (via Interactive Demonstrator)

Requires Interactive Demonstrator (BC is a 1-step special case)

Inverse RL

Learn *r* such that:

$$\pi^* = \arg \max_{\theta} \mathbb{E}_{s \sim P(s|\theta)} r(s, \pi_{\theta}(s))$$

Collect

Demonstrations

Supervised

Learning

Rollout in

Environment

Assume learning r is statistically easier than directly learning π^*

Recap

- Imitation learning and inverse RL
- Learning from other sources of data Pairwise Comparisons
- Learning from other sources of data Foundation Models
- Learning from physical feedback
- Learning from gestures
- Learning from sketches
- Data Quality

Actively synthesizing queries

[Sadigh et al. RSS17] [Biyik et al. CoRL18] [Biyik et al. CDC19] [Palan et al. RSS19] [Biyik et al. CoRL19] [Basu et al. IROS19] [Biyik et al. RSS20] [Myers et al. CoRL21] [Myers et al. ICRA22]

Subject to
$$\varphi \in \mathbb{F}$$

 $\mathbb{F} = \{\varphi : \varphi = \Phi(\xi_A) - \Phi(\xi_B), \xi_A, \xi_B \in \Xi\}$

Human update function $f_{\varphi}(w) = \min(1, \exp(I_t w^{\top} \varphi))$

Recap

- Imitation learning and inverse RL
- Learning from other sources of data Pairwise Comparisons
- Learning from other sources of data Foundation Models
- Learning from physical feedback
- Learning from gestures
- Learning from sketches
- Data Quality

Negotiation Domain

Prompt (ρ)

Task description (ρ_1)

Example from user describing objective (versatile behavior)

C Drait

 (ρ_2)

Episode outcome described as string using parse $f(\rho_3)$

Question (ρ_4)

Recap

- Imitation learning and inverse RL
- Learning from other sources of data Pairwise Comparisons
- Learning from other sources of data Foundation Models
- Learning from physical feedback
- Learning from gestures
- Learning from sketches
- Data Quality

Today's itinerary

- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment

Today's itinerary

- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment

Learning from Humans

Existing research explores how robots *adapt* to humans

- Imitation learning
- Learning from demonstrations

Influencing Humans

Far less studies how robots *influence* humans

[Sadigh, Sastry, Seshia, Dragan, RSS 2016, IROS 2016, AURO 2018]

An autonomous car's actions will *affect* the actions of other drivers.

Source: https://twitter.com/nitguptaa/

Interaction as a Dynamical System

Interaction as a Dynamical System

$$\boldsymbol{u}_{\mathcal{R}}^{*} = \operatorname{argmax}_{u_{\mathcal{R}}} R_{\mathcal{R}}(x, \boldsymbol{u}_{\mathcal{R}}, \boldsymbol{u}_{\mathcal{H}}^{*}(x, \boldsymbol{u}_{\mathcal{R}}))$$

Find optimal actions for the robot while accounting for the human response $u_{\mathcal{H}}^*$.

Model $u_{\mathcal{H}}^*$ as optimizing the human reward function $R_{\mathcal{H}}$.

$$u_{\mathcal{H}}^*(x, u_{\mathcal{R}}) \approx \operatorname*{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{\mathcal{H}})$$

Learning Driver Models

Learn Human's reward function based on Inverse Reinforcement Learning:

$$P(u_{\mathcal{H}}|x,w) = \frac{\exp(R_{\mathcal{H}}(x,u_{\mathcal{R}},u_{\mathcal{H}}))}{\int \exp(R_{\mathcal{H}}(x,u_{\mathcal{R}},\breve{u}_{\mathcal{H}})) d\,\breve{u}_{\mathcal{H}}}$$

[Ziebart' 09] [Levine'10]

Interaction as a Dynamical System

$$u_{\mathcal{R}}^* = \operatorname{argmax}_{u_{\mathcal{R}}} R_{\mathcal{R}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}^*(x, u_{\mathcal{R}}))$$

Find optimal actions for the robot while accounting for the human response $u_{\mathcal{H}}^*$.

Model $u_{\mathcal{H}}^*$ as optimizing the human reward function $R_{\mathcal{H}}$.

$$u_{\mathcal{H}}^*(x, u_{\mathcal{R}}) \approx \operatorname*{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{H})$$

Approximations for Tractability

- Receding Horizon Control:

Plan for short time horizon, replan at every step.

– Model the problem as a *Stackelberg game*. Give the human full access to $u_{\mathcal{R}}$ for the short time horizon.

Approximations for Tractability

- Receding Horizon Control:

Plan for short time horizon, replan at every step.

– Model the problem as a *Stackelberg game*. Give the human full access to $u_{\mathcal{R}}$ for the short time horizon.

$$u_{\mathcal{H}}^*(x, u_{\mathcal{R}}) = \operatorname*{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{\mathcal{H}})$$

– Assume deterministic human model.

Solution of Nested Optimization

$$u_{\mathcal{R}}^{*} = \operatorname{argmax}_{u_{\mathcal{R}}} R_{\mathcal{R}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}^{*}(x, u_{\mathcal{R}}))$$
$$R_{\mathcal{R}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}) = \sum_{t=1}^{N} r_{\mathcal{R}}(x^{t}, u_{\mathcal{R}}^{t}, u_{\mathcal{H}}^{t})$$

Gradient-Based Method (Quasi-Newton):

$$\begin{cases} R_{\mathcal{R}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}^{*}) \\ \frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{R}}} = \frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{H}}} \frac{\partial u_{\mathcal{H}}^{*}}{\partial u_{\mathcal{R}}} + \frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{R}}} \end{cases}$$

$$u_{\mathcal{H}}^{*}(x, u_{\mathcal{R}}) \approx \operatorname{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{\mathcal{H}})$$
$$R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}) = \sum_{t=1}^{N} r_{\mathcal{H}}(x^{t}, u_{\mathcal{R}}^{t}, u_{\mathcal{H}}^{t})$$

Solution of Nested Optimization

Quasi-Newton method:

$$\frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{R}}} = \frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{H}}} \cdot \frac{\partial u_{\mathcal{H}}^*}{\partial u_{\mathcal{R}}} + \frac{\partial R_{\mathcal{R}}}{\partial u_{\mathcal{R}}}$$

Given $R_{\mathcal{H}}$ is:,

- smooth,
- its minimum is attained,

for an *unconstrained optimization*, the partial $\frac{\partial R_{\mathcal{H}}}{\partial u_{\mathcal{H}}}$ at the optimum $u_{\mathcal{H}}^*$ evaluates to zero.

$$\frac{\partial R_{\mathcal{H}}}{\partial u_{\mathcal{H}}} (x, u_{\mathcal{R}}, u_{\mathcal{H}}^* (x, u_{\mathcal{R}})) = 0$$

$$\frac{\partial^2 R_{\mathcal{H}}}{\partial u_{\mathcal{H}}^2} \cdot \frac{\partial u_{\mathcal{H}}^*}{\partial u_{\mathcal{H}}} + \frac{\partial^2 R_{\mathcal{H}}}{\partial u_{\mathcal{H}} \partial u_{\mathcal{R}}} \cdot \frac{\partial u_{\mathcal{R}}}{\partial u_{\mathcal{R}}} = 0$$

Implication: Efficiency

Human

Implication: Efficiency

Implication: Efficiency

Legible Motion

Using robot motion to coordinate with the human better about the robot's goal

We can't rely on a **single** driver model.

We need to *differentiate* between different drivers.

Drivers *respond* to actions of other cars.

...We have an opportunity to *actively gather information.*

Nudging in for Active Info Gathering

Nudging in for Active Info Gathering

Attentive Human

Robot Active Info Gathering

time

Belief over Driving Style: Active vs Passive

Key Idea:

Robot's actions *affect* human's actions. We want to leverage these effects for better safety and efficiency and better estimation.

Today's itinerary

- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment