
Principles of Robot Autonomy II
Human-Robot Interac0on



Announcement

Paper presenta*on for 4-credit students due next Wednesday.

Turn them in on Gradescope (slides for live presenters, video 

recordings for non-live presenters)



Today’s i1nerary

• Game-Theore*c Views on Mul*-Agent Interac*ons

• Partner Modeling: Ac*ve Info Gathering over Human’s Intent

• Partner Modeling: Learning and Influencing Latent Intent

• Partner Modeling: Role Assignment
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Nth order Theory of Mind

[Sadigh, Sastry, Seshia, Dragan, RSS 2016, IROS 2016, AURO 2018]



Find optimal actions for the 
robot while accounting for
the human response 𝑢ℋ∗ .

𝑢ℛ∗ = argmax
#ℛ

𝑅ℛ(𝑥, 𝑢ℛ , 𝑢ℋ∗ (𝑥, 𝑢ℛ))

𝑢ℋ∗ 𝑥, 𝑢ℛ ≈ argmax
#ℋ

𝑅ℋ(𝑥, 𝑢ℛ , 𝑢ℋ)

Model 𝑢ℋ∗  as op0mizing 
the human reward 
func0on 𝑅ℋ.

Interac(on as a Dynamical System

Sadigh et al. RSS 2016, AURO 2018



𝑝 𝑢ℋ 𝑥, 𝜃, 𝑢ℛ ∝ exp(𝑅ℋ(𝑥, 𝑢ℋ, 𝜃, 𝑢ℛ))

𝑏$%& 𝜃 ∝ 𝑏$ 𝜃 ⋅ 𝑝(𝑢ℋ|𝑥$, 𝜃, 𝑢ℛ)

𝑅ℛ 𝑥, 𝑢ℋ, 𝜃, 𝑢ℛ = ℍ 𝑏$ −ℍ 𝑏$%&
+𝜆 ⋅ 𝑅'()*(𝑥, 𝑢ℋ, 𝜃, 𝑢ℛ)

Goal

Info Gathering

𝑢ℛ = argmax
+ℛ

𝔼,[𝑅ℛ]
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Modeling Intent Inference using POMDPs

[Javdani et al.]



POMDP Formula7on

MDPs have:

States 𝑆

Ac0ons 𝐴
Transi0on Func0on 𝑃(𝑠-|𝑠, 𝑎)

Reward 𝑅(𝑠, 𝑎, 𝑠′)

POMDPs add:
Observa0ons 𝑂

Observa0on Func0on 𝑃(𝑜|𝑠)



Tiger Example

Actions 𝑎 = {0, : listen	1: open	left, 2: open	right}

Reward Func1on:
- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost of listening: -1

Observa1ons:
- To hear the Jger on the leK
- To hear the Jger on the right



Tiger Example

𝑏& 𝑠D ∝ 𝑝 𝑜 𝑠D, 𝑎 D
E"∈G	

𝑝 𝑠D 𝑠H, 𝑎 ⋅ 𝑏I(𝑠H)

𝑉∗ 𝑏 = max
)∈J	

[D
E∈G	

𝑏 𝑠 ⋅ 𝑅 𝑠, 𝑎 + 𝛾D
(∈K

𝑃 𝑜 𝑏, 𝑎 ⋅ 𝑉∗(𝑏())	]

Belief update based on observa0ons:

Immediate return Discounted future return
Value Itera0on 
over Beliefs

Hard to compute con0nuous space MDPs -> Approxima0on



Tiger Example

𝑉∗ 𝑏 = max
)∈J	

[D
E∈G	

𝑏 𝑠 ⋅ 𝑅 𝑠, 𝑎 + 𝛾D
(∈K

𝑃 𝑜 𝑏, 𝑎 ⋅ 𝑉∗(𝑏())	]

Immediate return Discounted future return
Value Itera0on 
over Beliefs

Hard to compute continuous space MDPs -> Approximation

𝑉∗ 𝑏 = 	𝔼E 𝑉∗ 𝑠 =D
E

𝑏 𝑠 ⋅ 𝑉∗(𝑠)
Q-MDP 
Approxima0on



𝑋	 Robot States
𝐴	 Robot Ac,ons
𝑇: 𝑋	×𝐴 → 𝑋	 Transi,on func,on

𝑢 ∈ 𝑈	 Human con,nuous input
𝐷:𝑈 → 𝐴	 Mapping between human input and robot ac,ons

Intent Inference



𝜋!"#$ 𝑥 = 𝑝(𝑢|𝑥, 𝑔)	 We learn a policy for each goal

User’s Policy is Learned from IRL

𝑝 𝜉 𝑔 ∝ exp(−𝐶!"#$ 𝜉 )

𝑝 𝑔 𝜉 ∝ 𝑝 𝜉 𝑔 ⋅ 𝑝(𝑔)
POMDP Observa,on Model

Bayes Rule



Hindsight Op1miza1on (Q-MDP)

Estimate cost-to-go of the belief by assuming full observability will be obtained at the next 
time step.

You never gather informa,on, but can plan efficiently in determinis,c subproblems.

𝑄 𝑏, 𝑎, 𝑢 ='
!

𝑏 𝑔 ⋅ 𝑄!(𝑥, 𝑎, 𝑢)
AcJon-Value funcJon of the POMDP

𝑏 𝑠 = 𝑏 𝑔 = 𝑝 𝑔 𝜉 Uncertainty is only over goals

Cost-to-Go of AcJng opJmally and going towards goal 𝑔



Shared Autonomy with Hindsight 
Op1miza1on







• Assistive robotic arms are dexterous
• This dexterity makes it hard for users to control 

the robot

• How can robots learn low-dimensional 
representations that make controlling the robot 
intuitive?



Our Vision

Offline, expert demonstra0ons of high-dimensional mo0ons



Our Vision

Learn low-dimensional latent representa0ons for online control



We make it easier to control high-dimensional 
robots by embedding the robot’s ac8ons into a 

low-dimensional latent space.



Model 
Structure

(cVAE)



Model 
Structure

(cVAE)



User Study

• We trained on less than 7 minutes of kinesthe0c demonstra0ons
• Demonstra0ons consisted of moving between shelves, pouring, s0rring, and 

reaching mo0ons
• We compared our Latent Ac:on to the current method for assis0ve robo0c arms 

(End-Effector)



End-Effector



End-Effector



Latent 
Ac6ons





Results
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Nth order Theory of Mind

Most interac,ve tasks are 
not the same as playing 

chess!





… low-dimensional shared representa2on
 that captures the interac2on and can change over 2me.



Other agents are o9en non-sta2onary: 
They update their behavior in response to the robot.



Ego Agent Other Agent



𝑎 ∈ ℝ!



Ego Agent Other Agent

𝒛𝟏
𝒛𝟐
𝒛𝟑



𝜏! = 𝑠", 𝑎", 𝑟" , … , 𝑠# , 𝑎# , 𝑟#



𝑧!"#	~	𝑓 %	 𝑧! , 𝜏!)



Modeling Other Agent’s Behavior



𝑧.ℰ/

𝜏.01

Modeling Other Agent’s Behavior



𝑧.ℰ/

𝜏.01

I think it will 
aim right 

next



𝑧.ℰ/ 𝒟2

𝜏.01 �̂�.

I think it will 
aim right 

next



Learning objec-ve: max
!,#

$
$%&

'

$
(%)

*

log 𝑝!,# 𝑠(+)$ , 𝑟($ 	 𝑠($ , 𝑎($ , 𝜏$,))

𝑧.ℰ/ 𝒟2

𝜏.01 �̂�.

I think it will 
aim right 

next



ℰ 𝒟𝑧!𝜏!"# �̂�!

Representa)on Learning

Experience
Buffer

𝜏!"#, 𝜏!



Maximize expected return 
within an interac-on

max
+
'
,-.

/

𝛾,𝔼0N(2|4,	7O) '
9-.

:

𝑅(𝑠, 𝑧,)

to react to the other agent

Learning and Influencing Latent Intent

[Xie, Losey, Tolsma, Finn, Sadigh, CoRL 2020]

ℰ 𝒟𝑧!𝜏!"# �̂�!

Representa)on Learning

Experience
Buffer

𝜏!"#, 𝜏!



Ego Agent Other Agent

Air Hockey Results

leT

middle

right



+1Ego Agent Other Agent

Air Hockey Results



Ego Agent Other Agent

Air Hockey Results



Ego Agent Other Agent

Air Hockey Results

+2



Ego Agent Other Agent

Air Hockey Results



SAC: initial policy

2x speed



SAC: 2 hours of training

2x speed



SAC: 4 hours of training

2x speed



Air Hockey Results



LILI: 4 hours of training

2x speed



Air Hockey Results



Maximize expected return 
within an interac-on

max
+
'
,-.

/

𝛾,𝔼0N(2|4,	7O) '
9-.

:

𝑅(𝑠, 𝑧,)

to react to the other agent

Reac8ng to Other Agents

ℰ 𝒟𝑧!𝜏!"# �̂�!

Representa)on Learning

Experience
Buffer

𝜏!"#, 𝜏!



max
+
'
,-.

/

𝛾,𝔼0N(2|4,	7O) '
9-.

:

𝑅(𝑠, 𝑧,)

Maximize expected return across 
interac-ons

to influence the other agent

Influencing Other Agents

ℰ 𝒟𝑧!𝜏!"# �̂�!

Representa)on Learning

Experience
Buffer

𝜏!"#, 𝜏!



LILI (with influence): 4 hours of training

2x speed



Air Hockey Results



Air Hockey Results



Air Hockey Results

[Xie, Losey, Tolsma, Finn, Sadigh, CoRL 2020]



Playing with a
Human Expert

SAC: 45% success



LILI : 73% success

Playing with a
Human Expert



Key Takeaways

Human partners are oTen non-sta0onary – 
which can be represented by low-dimensional latent strategies.

LILI an1cipates the partner’s policies using latent strategies to react and 
influence the other agent.



Today’s i1nerary

•  Game-Theoretic Views on Multi-Agent Interactions

• Partner Modeling: Active Info Gathering over Human’s Intent

• Partner Modeling: Learning and Influencing Latent Intent

• Partner Modeling: Role Assignment


