Principles of Robot Autonomy II

Human-Robot Interaction

intelligent and interactive autonomous systems

Announcement

Paper presentation for 4-credit students due next Wednesday.

Turn them in on Gradescope (slides for live presenters, video

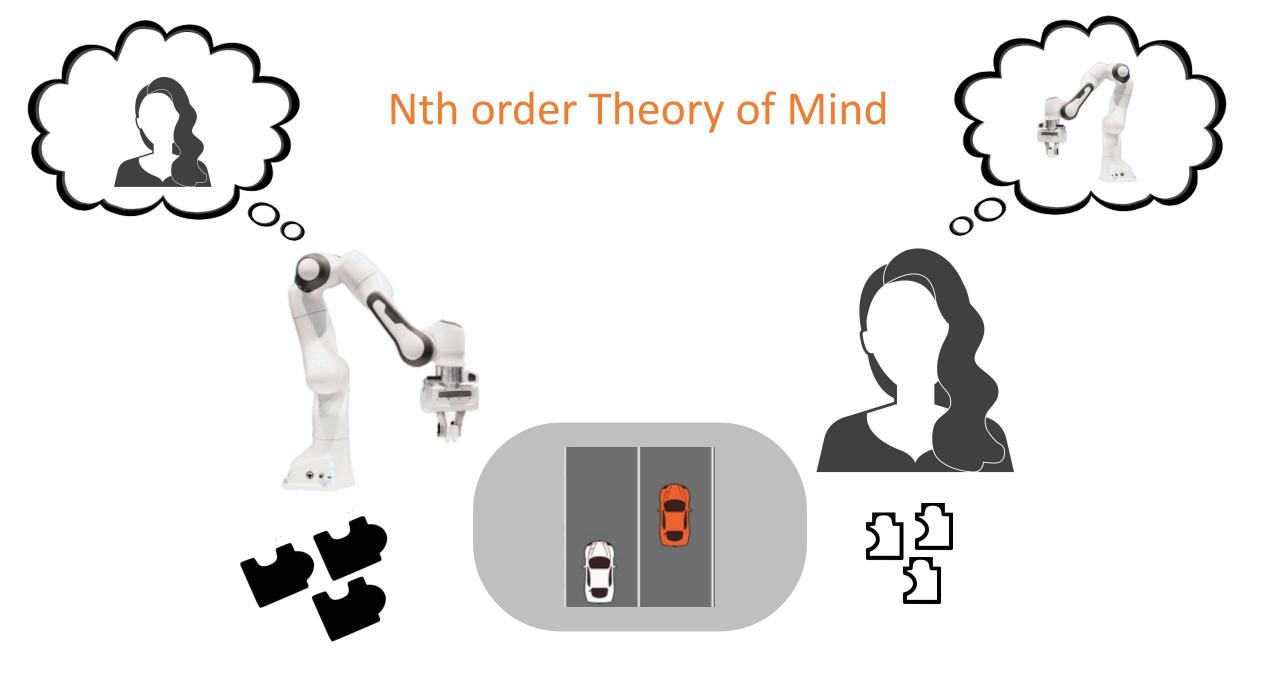
recordings for non-live presenters)

Today's itinerary

- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment

Today's itinerary

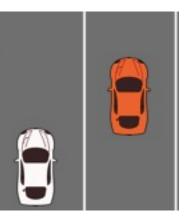
- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment



[Sadigh, Sastry, Seshia, Dragan, RSS 2016, IROS 2016, AURO 2018]

Interaction as a Dynamical System

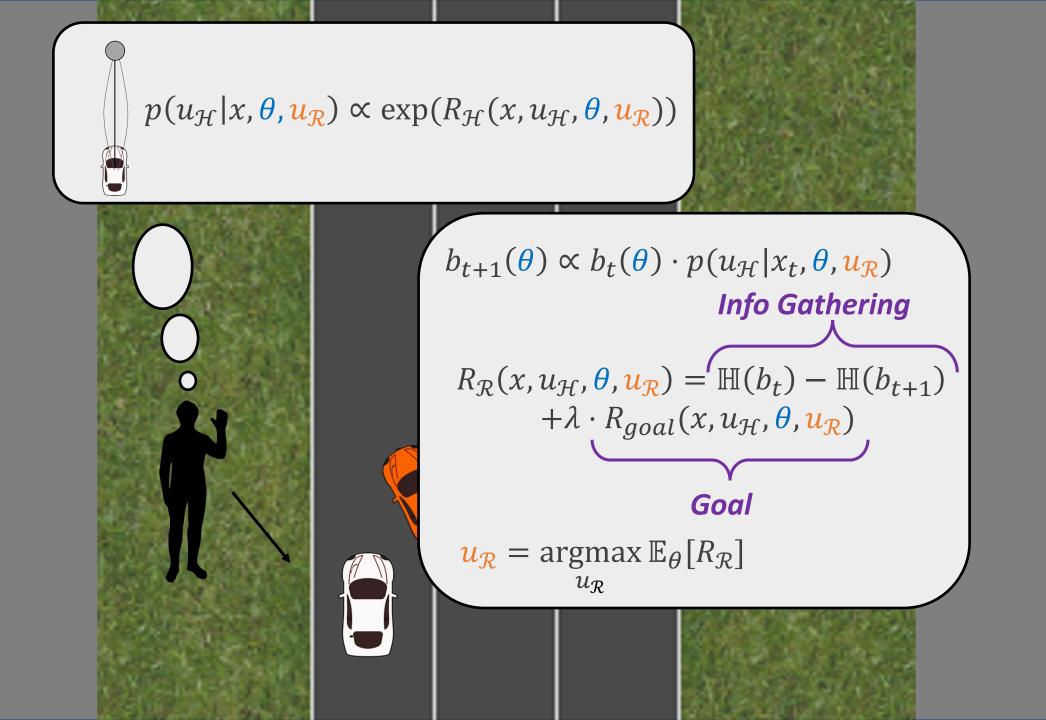
$$u_{\mathcal{R}}^* = \operatorname{argmax}_{u_{\mathcal{R}}} R_{\mathcal{R}}(x, u_{\mathcal{R}}, u_{\mathcal{H}}^*(x, u_{\mathcal{R}}))$$



Find optimal actions for the robot while accounting for the human response $u_{\mathcal{H}}^*$.

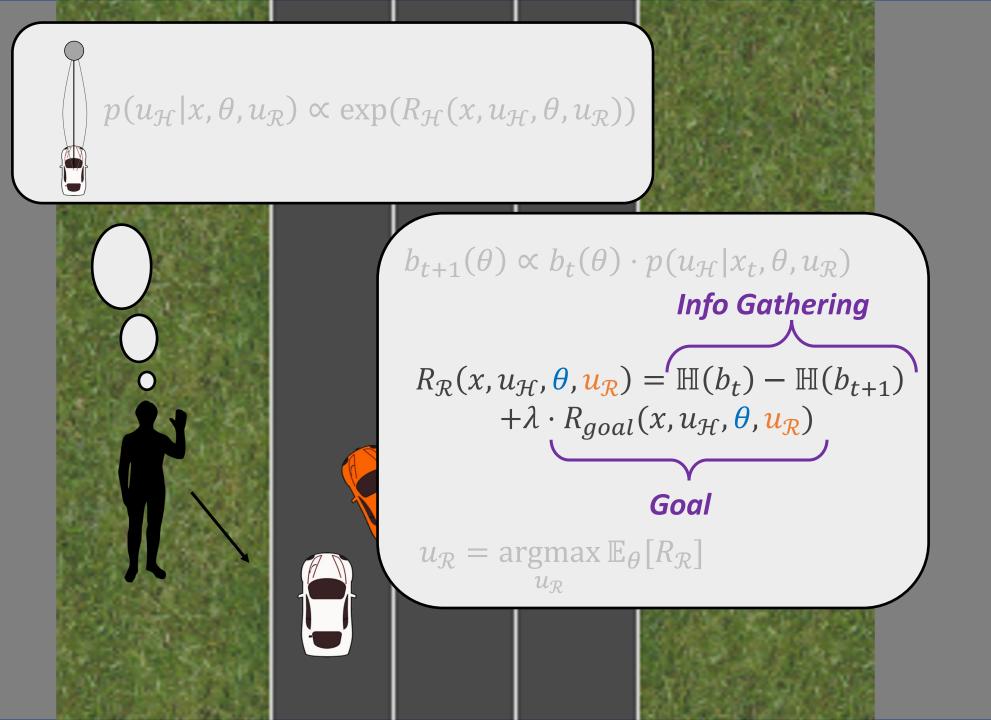
Model $u_{\mathcal{H}}^*$ as optimizing the human reward function $R_{\mathcal{H}}$.

 $u_{\mathcal{H}}^*(x, u_{\mathcal{R}}) \approx \operatorname*{argmax}_{u_{\mathcal{H}}} R_{\mathcal{H}}(x, u_{\mathcal{R}}, u_{\mathcal{H}})$

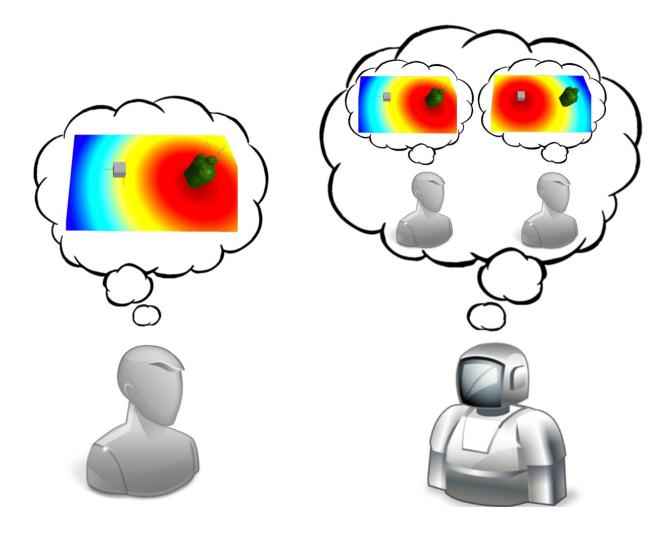


Today's itinerary

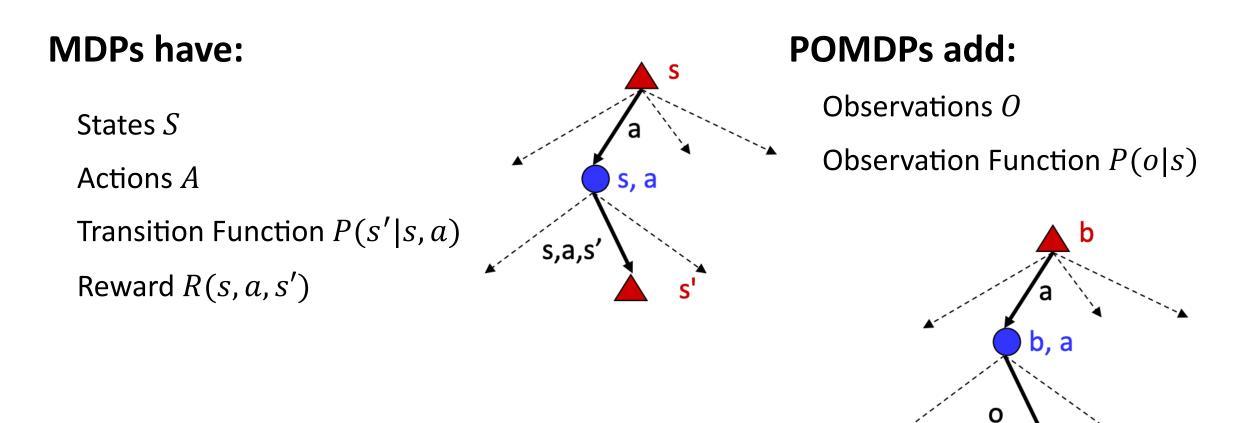
- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment



Modeling Intent Inference using POMDPs

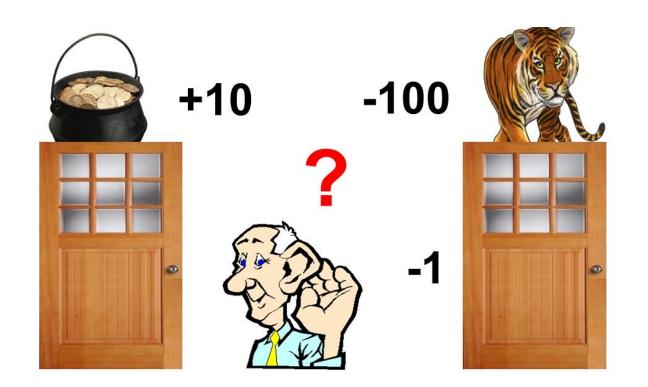


POMDP Formulation



h

Tiger Example



Actions $a = \{0, : \text{listen 1: open left, 2: open right}\}$

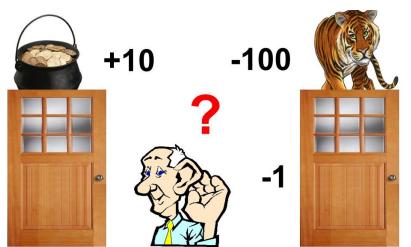
Reward Function:

- Penalty for wrong opening: -100
- Reward for correct opening: +10
- Cost of listening: -1

Observations:

- To hear the tiger on the left
- To hear the tiger on the right

Tiger Example



Belief update based on observations:

$$b_1(s_i) \propto p(o|s_i, a) \sum_{s_j \in S} p(s_i|s_j, a) \cdot b_0(s_j)$$

Value Iteration over Beliefs $V^*(b) = \max_{a \in A} \left[\sum_{s \in S} b(s) \cdot R(s, a) + \gamma \sum_{o \in O} P(o|b, a) \cdot V^*(b_o^a) \right]$

Hard to compute continuous space MDPs -> Approximation

Tiger Example

Immediate return Discounted future return

Value Iteration over Beliefs

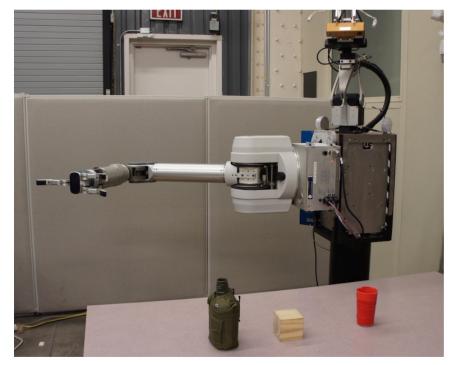
$$V^{*}(b) = \max_{a \in A} \left[\sum_{s \in S} b(s) \cdot R(s, a) + \gamma \sum_{o \in O} P(o|b, a) \cdot V^{*}(b_{o}^{a}) \right]$$

Hard to compute continuous space MDPs -> Approximation

Q-MDP Approximation $V^*(b) = \mathbb{E}_s[V^*(s)] = \sum_s b(s) \cdot V^*(s)$

Intent Inference

- *X* Robot States
- A Robot Actions
- $T: X \times A \rightarrow X$ Transition function



- $u \in U$ Human continuous input
- $D: U \rightarrow A$ Mapping between human input and robot actions

User's Policy is Learned from IRL

 $\pi_g^{usr}(x) = p(u|x,g)$ We learn a policy for each goal

 $p(\xi|g) \propto \exp(-C_g^{usr}(\xi))$

$p(g|\xi) \propto p(\xi|g) \cdot p(g)$ Bayes Rule

POMDP Observation Model



Hindsight Optimization (Q-MDP)

Estimate cost-to-go of the belief by assuming full observability will be obtained at the next time step.

You never gather information, but can plan efficiently in deterministic subproblems.

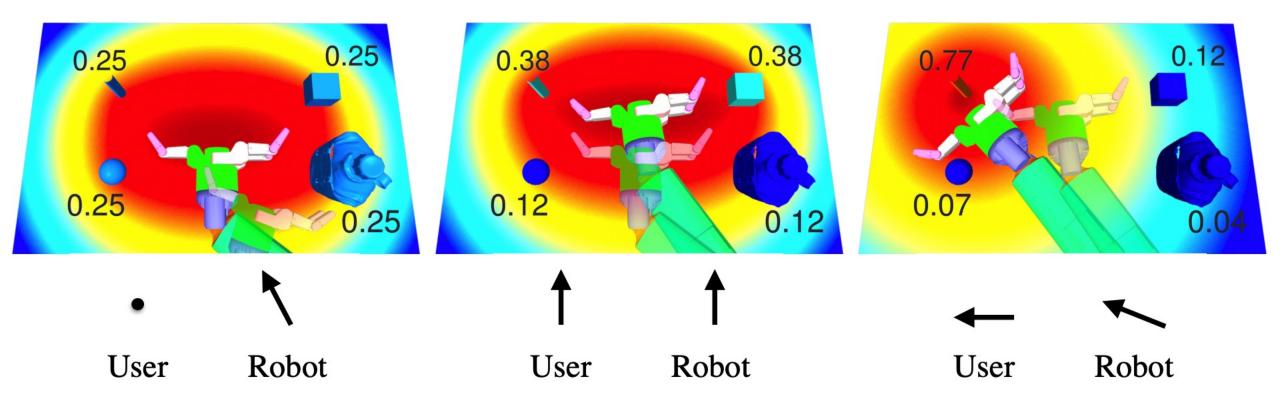
 $b(s) = b(g) = p(g|\xi)$ Uncertainty is only over goals

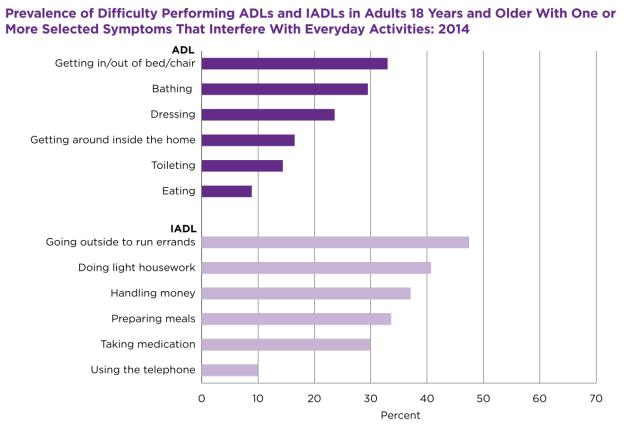
$$Q(b, a, u) = \sum_{g} b(g) \cdot Q_g(x, a, u)$$
of the POMDP
$$G(x, a, u) = \sum_{g} b(g) \cdot Q_g(x, a, u)$$
Cost-to-Go of Acting

Action-Value function of the POMDP

Cost-to-Go of Acting optimally and going towards goal g

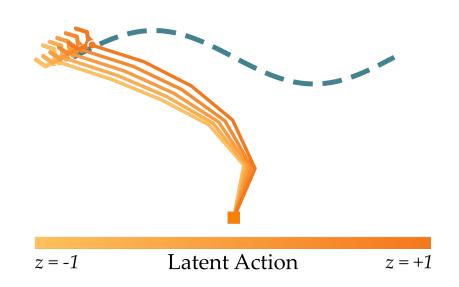
Shared Autonomy with Hindsight Optimization





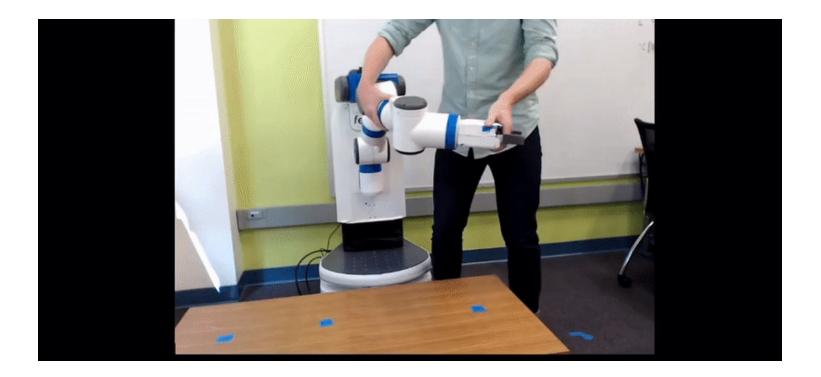
More Selected Symptoms That Interfere With Everyday Activities: 2014

Source: U.S. Census Bureau, Social Security Administration Supplement to the 2014 Panel of the Survey of Income and Program Participation, September-November 2014.



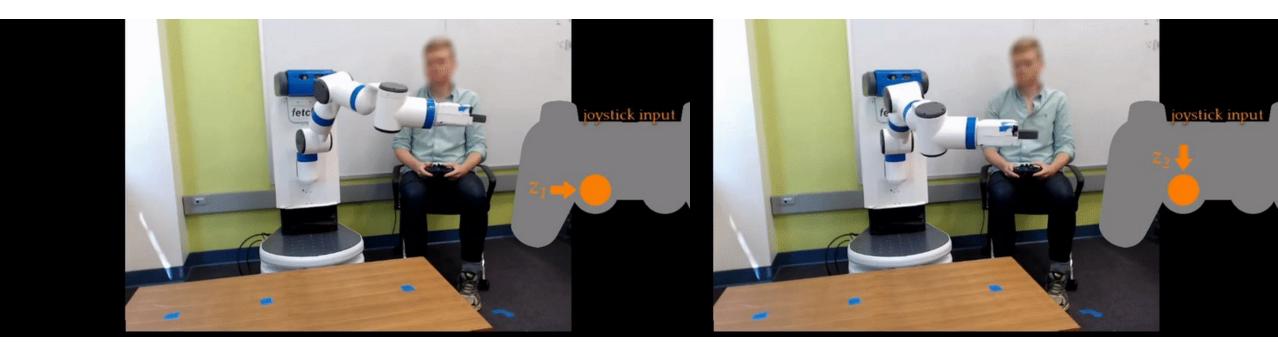
- Assistive robotic arms are *dexterous*
- This dexterity makes it hard for users to *control* the robot
- How can robots *learn* low-dimensional representations that make controlling the robot intuitive?

Our Vision



Offline, expert demonstrations of *high-dimensional* motions

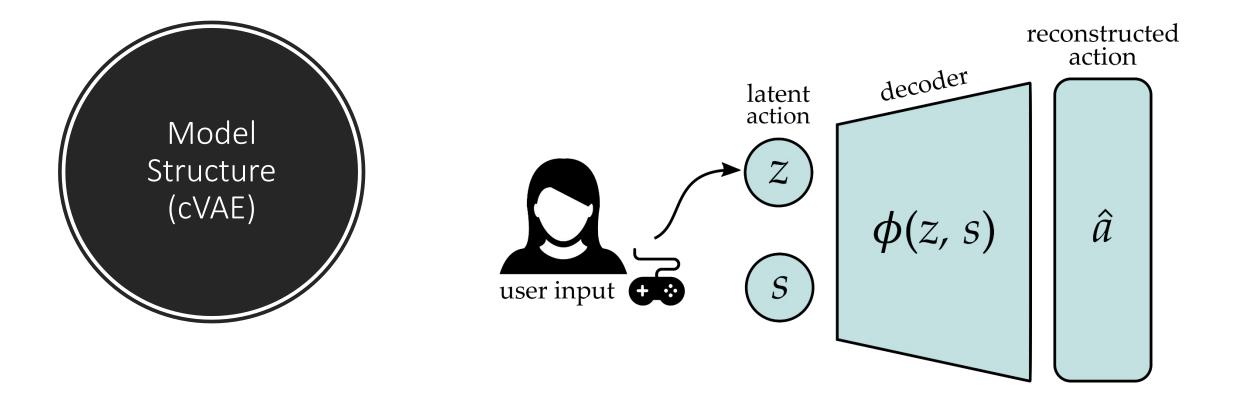
Our Vision



Learn *low-dimensional* latent representations for online control

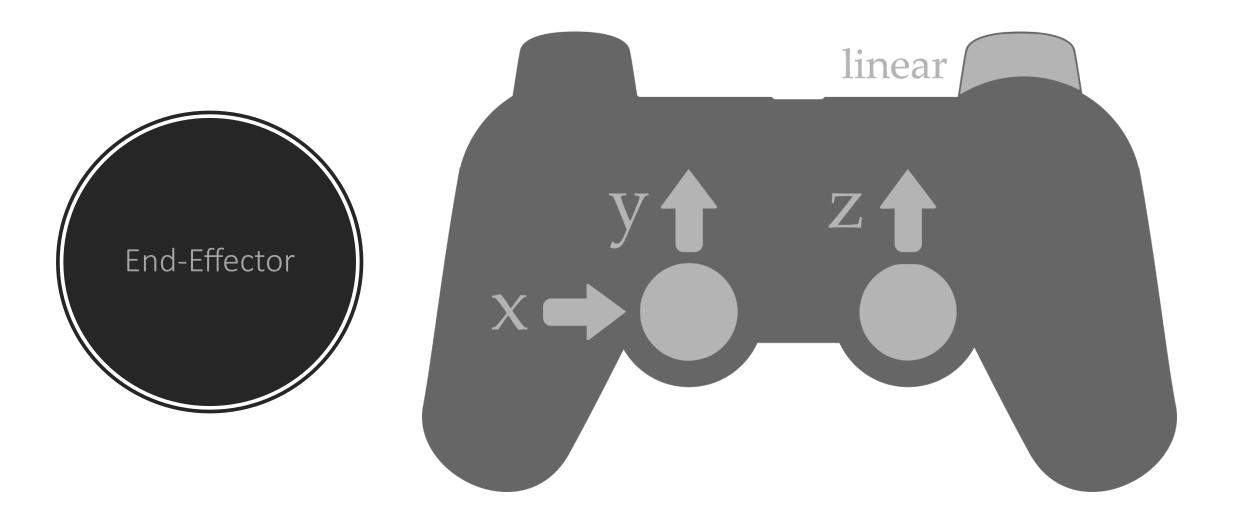
We make it easier to control *high-dimensional* robots by *embedding* the robot's actions into a *low-dimensional* latent space.

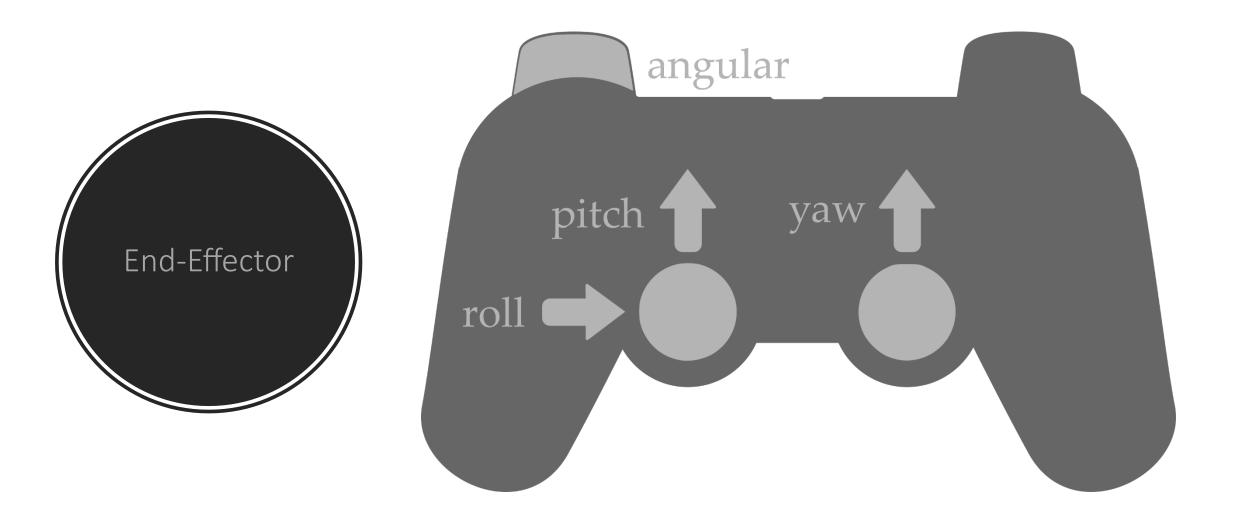


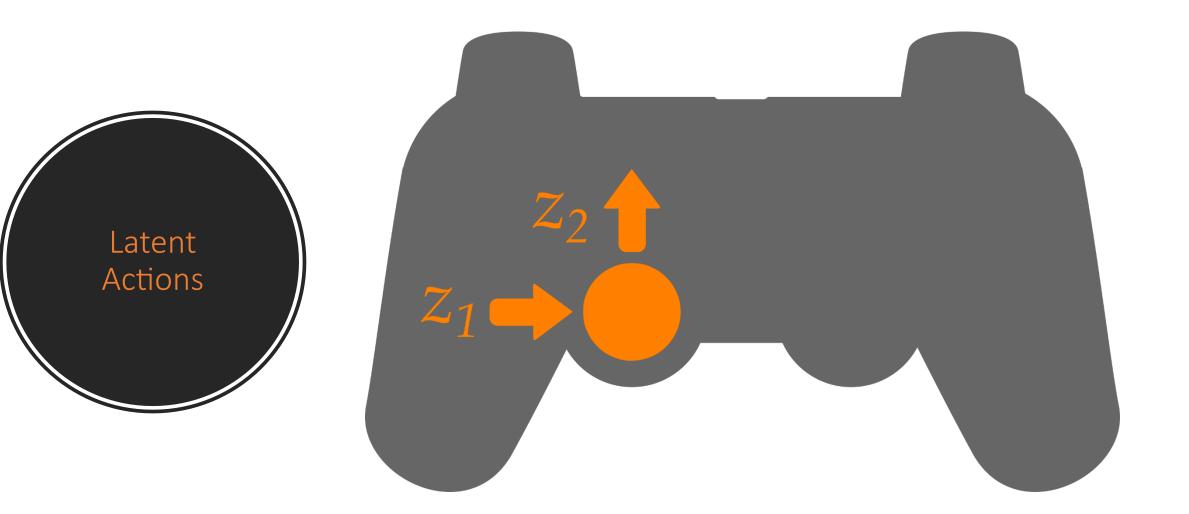


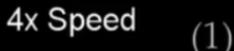
User Study

- We trained on less than **7** minutes of kinesthetic demonstrations
- Demonstrations consisted of moving between shelves, pouring, stirring, and reaching motions
- We compared our *Latent Action* to the current method for assistive robotic arms (*End-Effector*)







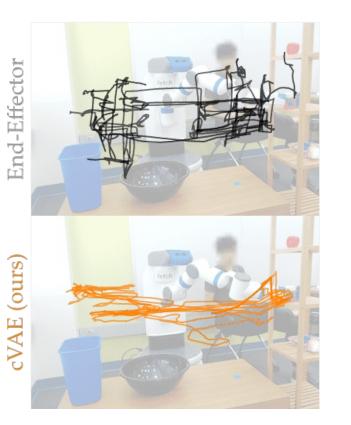


(1) add eggs

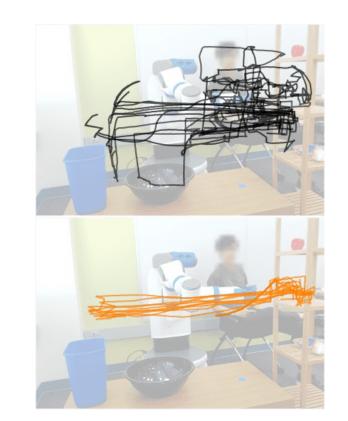
End-Effector

Latent Action

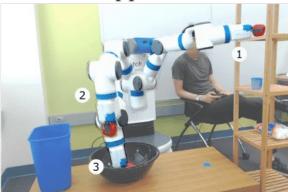
Add Eggs & Recycle

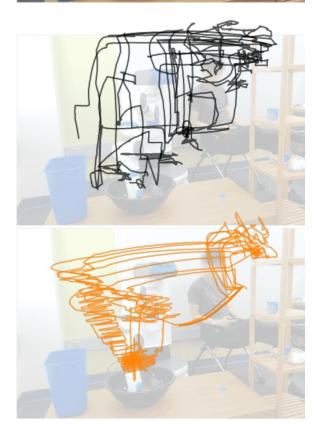


Add Flour & Return



Add Apple and Stir





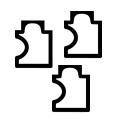
Task

Today's itinerary

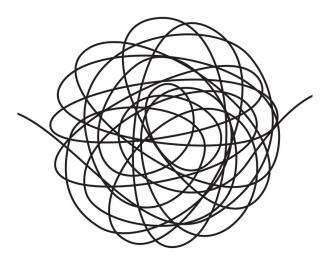
- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment

Nth order Theory of Mind

Most interactive tasks are not the same as playing chess!



... low-dimensional shared representation that captures the interaction and can change over time.





Other agents are often non-stationary: They update their behavior in response to the robot.

Ego Agent

SOUND

Other Agent

Ego Agent

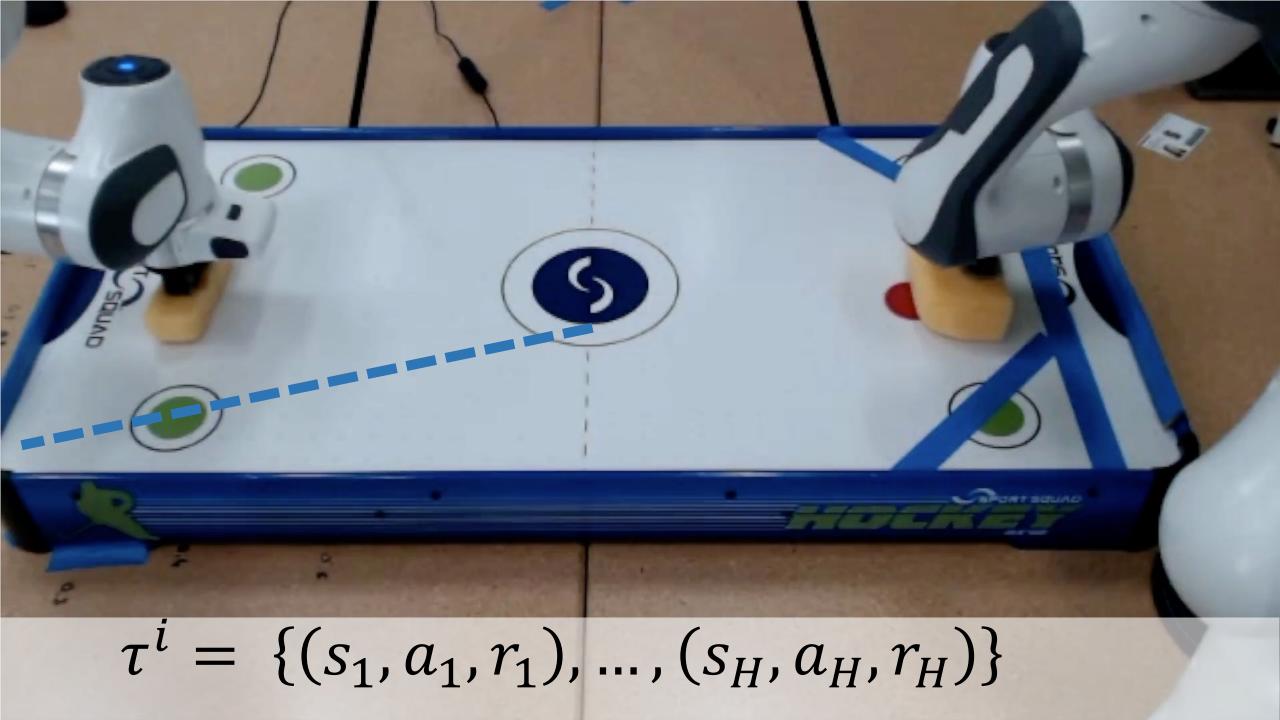
-NO

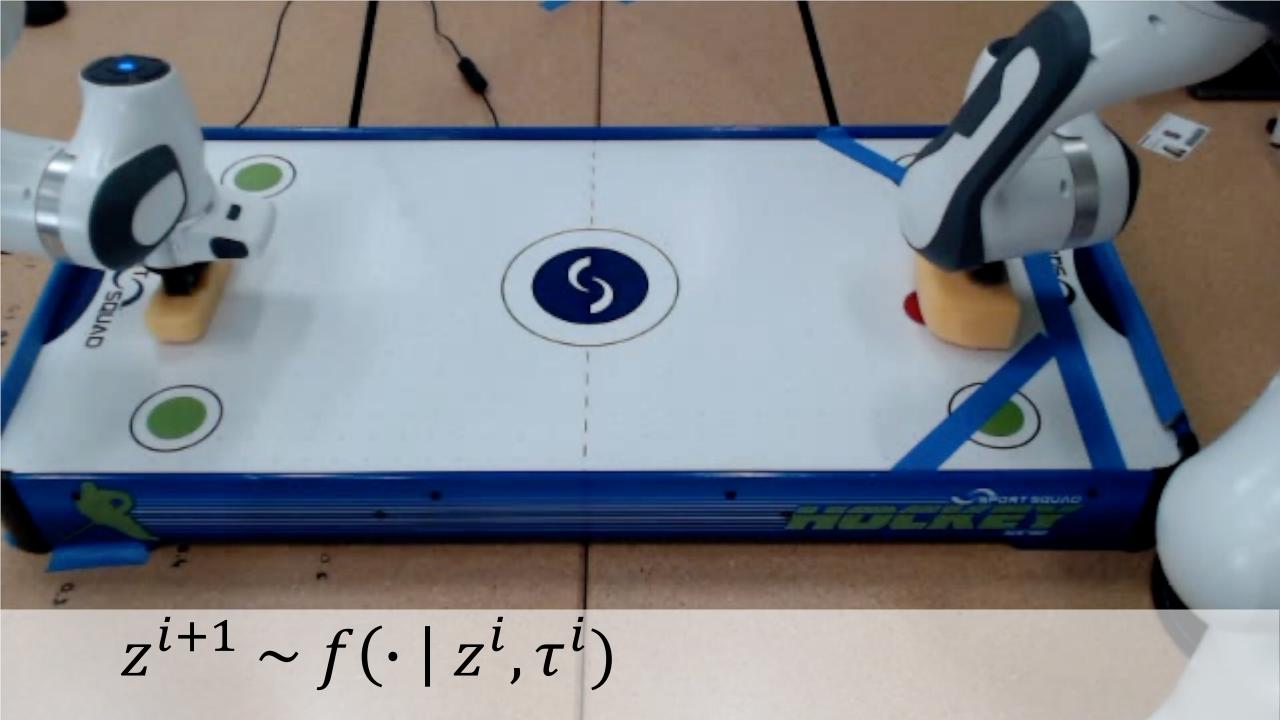
Other Agent

 z_1

 Z_2

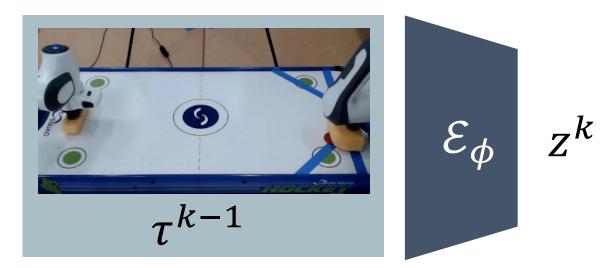
Z3

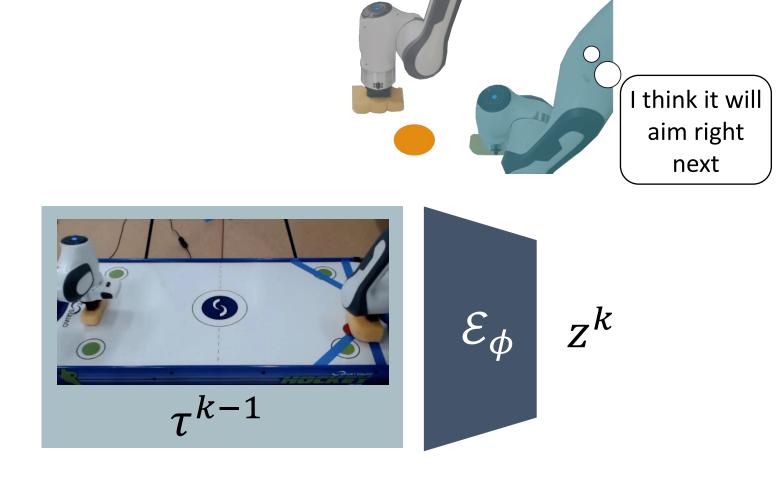


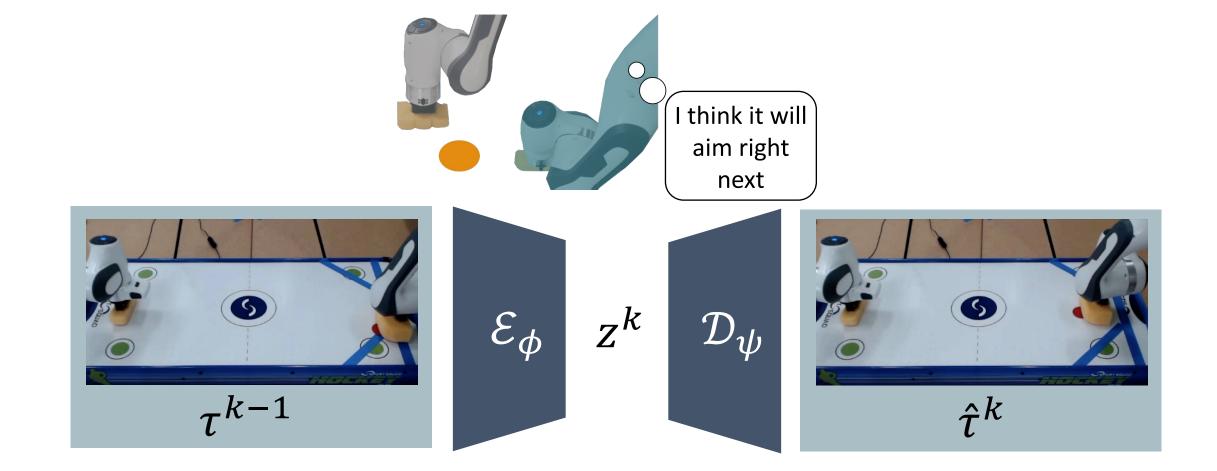


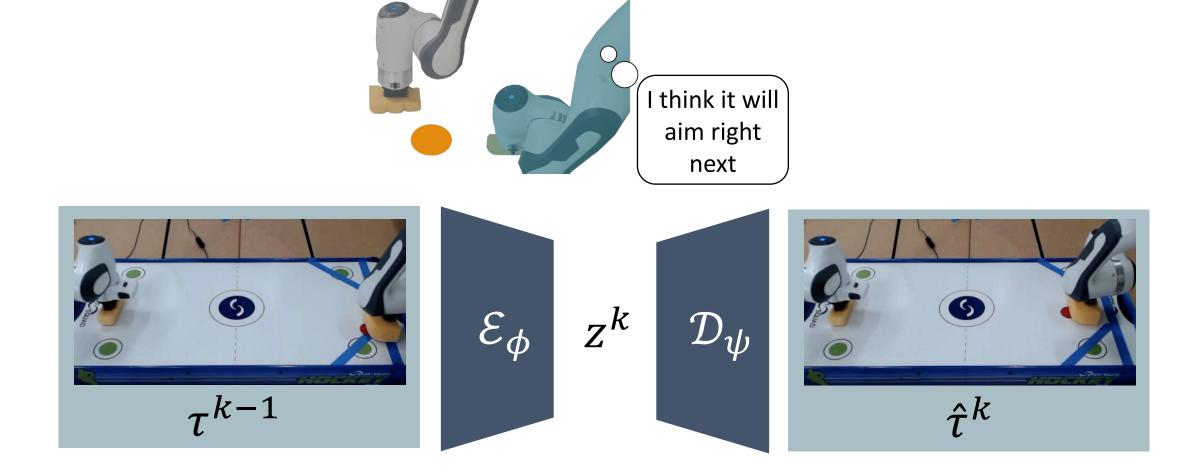
Modeling Other Agent's Behavior

Modeling Other Agent's Behavior





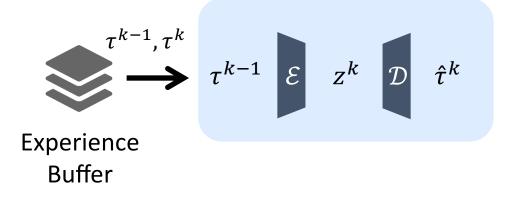




Learning objective:

$$\max_{\phi,\psi} \sum_{i=2}^{N} \sum_{t=1}^{H} \log p_{\phi,\psi}(s_{t+1}^{i}, r_{t}^{i} \mid s_{t}^{i}, a_{t}^{i}, \tau^{i-1})$$

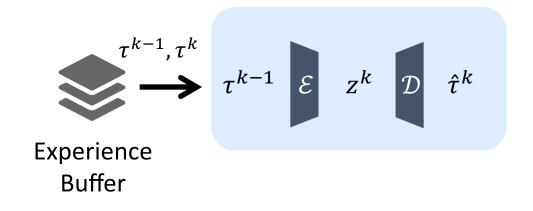
Representation Learning



Learning and Influencing Latent Intent

Maximize expected return *within* an interaction

$$\max_{\theta} \qquad \mathbb{E}_{\pi_{\theta}(a|s, z^{i})} \left[\sum_{t=1}^{H} R(s, z^{i}) \right]$$



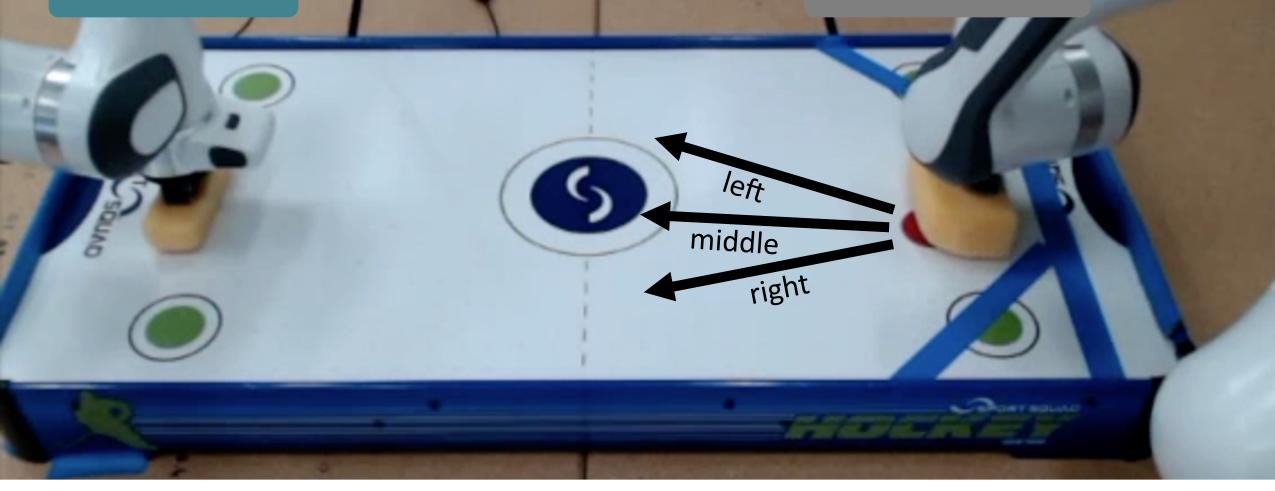
to *react to* the other agent

[Xie, Losey, Tolsma, Finn, Sadigh, CoRL 2020]

Representation Learning

Ego Agent

Other Agent



Ego Agent

+1

Other Agent

Ego Agent

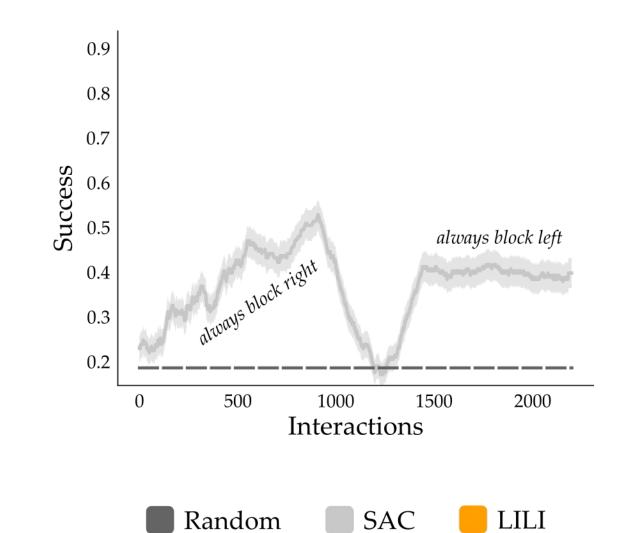
+2

Other Agent

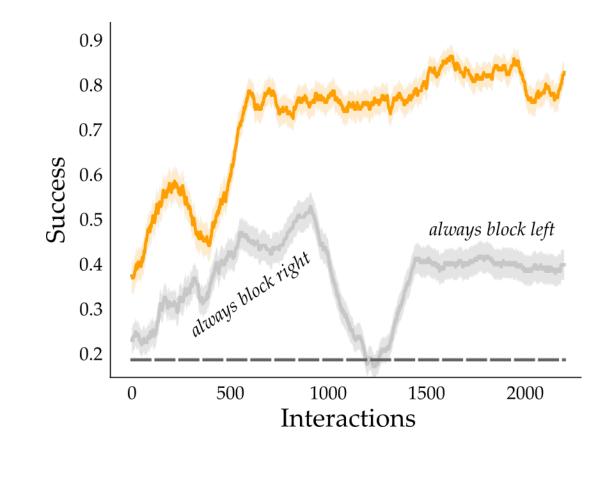
The state of the s

SAC: initial policy

SAC: 2 hours of training



2x speed

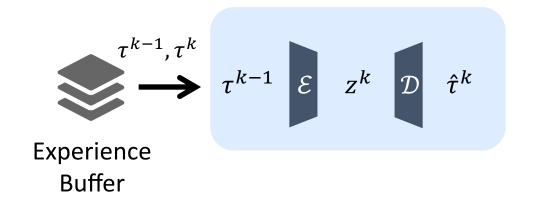


🖉 Random 👘 SAC 📒 LILI

Reacting to Other Agents

Maximize expected return *within* an interaction

$$\max_{\theta} \qquad \mathbb{E}_{\pi_{\theta}(a|s, z^{i})} \left[\sum_{t=1}^{H} R(s, z^{i}) \right]$$



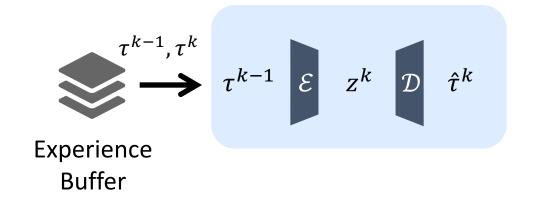
Representation Learning

to *react to* the other agent

Influencing Other Agents

Maximize expected return *across* interactions

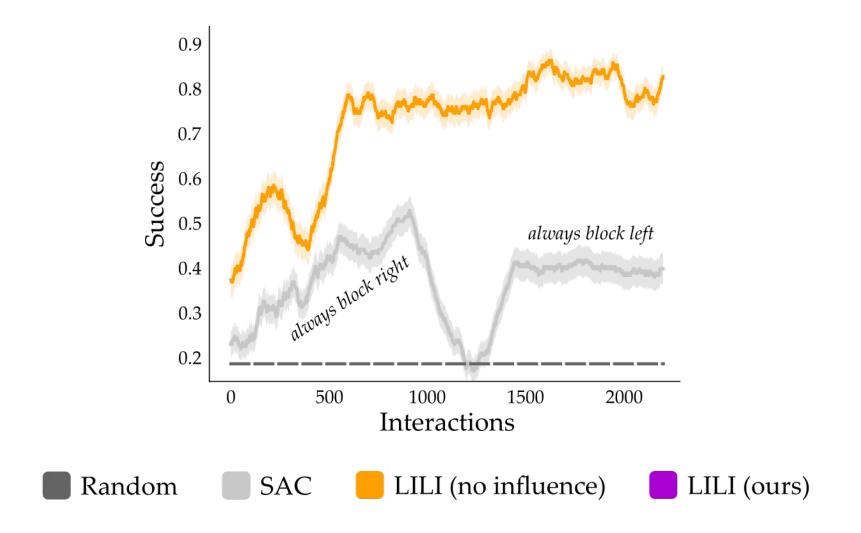
$$\max_{\theta} \sum_{i=1}^{\infty} \gamma^{i} \mathbb{E}_{\pi_{\theta}(a|s, z^{i})} \left[\sum_{t=1}^{H} R(s, z^{i}) \right]$$

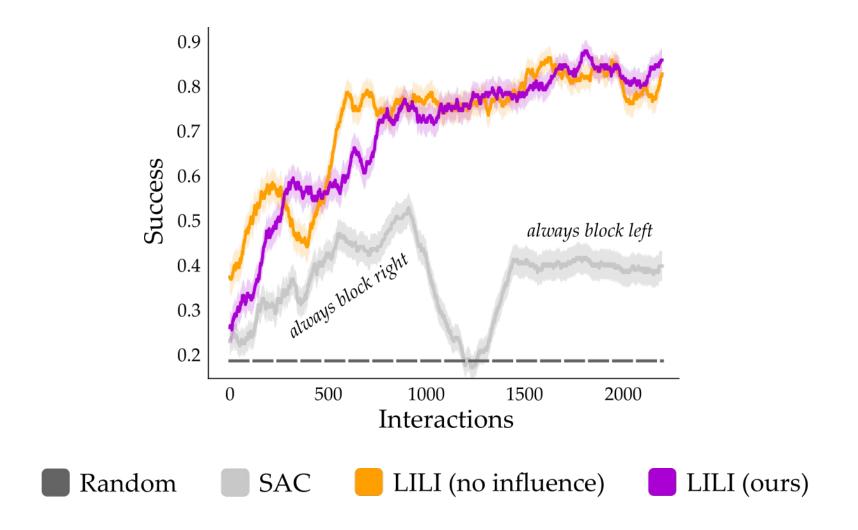


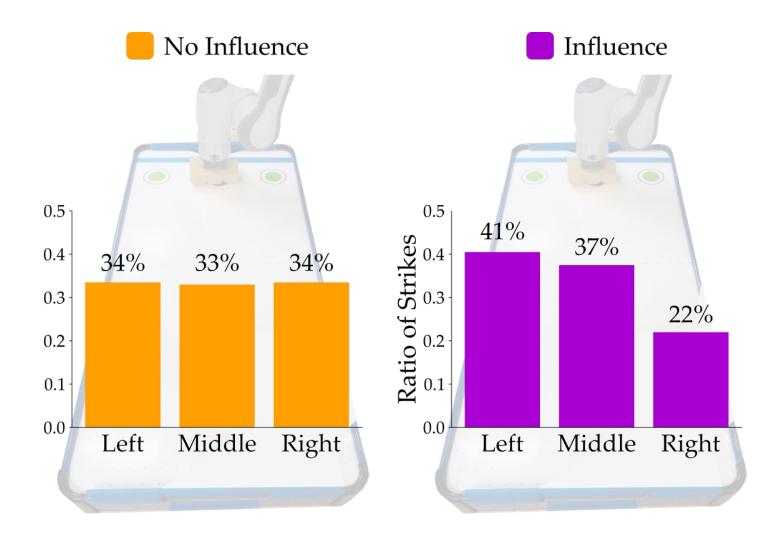
Representation Learning

to *influence* the other agent

LILI (with influence): 4 hours of training







Playing with a Human Expert

Playing with a Human Expert

Key Takeaways

Human partners are often non-stationary –

which can be represented by low-dimensional latent strategies.

LILI *anticipates* the partner's policies using latent strategies to *react* and *influence* the other agent.

Today's itinerary

- Game-Theoretic Views on Multi-Agent Interactions
- Partner Modeling: Active Info Gathering over Human's Intent
- Partner Modeling: Learning and Influencing Latent Intent
- Partner Modeling: Role Assignment