
3
Model-based and Model-free RL for Robot Control

The previous chapter introduced the deterministic and stochastic sequential de-
cision making problems, and demonstrated how these problems can be solved
by dynamic programming. While dynamic programming is a powerful algo-
rithm, it also suffers from several practical challenges. This chapter briefly in-
troduces some of the key ideas in reinforcement learning1,2, a set of ideas which 1 D. Bertsekas. Reinforcement learning and

optimal control. Athena Scientific, 2019

2 R. Sutton and A. Barto. Reinforcement
learning: An introduction. MIT Press,
2018

aims to solve a more general problem of behaving in an optimal way within a
given unknown environment. That is, the reinforcement learning setting assumes
only the ability to (1) interact with an unknown environment and (2) receive a
reward signal from it. How the actions affect the future state evolution or the
future reward is not known a priori. Reinforcement learning includes a class
of approximation algorithms which can be much more practical than dynamic
programming in real world applications.

Reinforcement Learning

Reinforcement learning (RL) is a broad field that studies autonomous sequen-
tial decision making, but extends to more general and challenging problems
than have been considered in previous chapters. The standard RL problem is
to determine closed-loop control policies that drive an agent to maximize an
accumulated reward3. However, in the general case it is not required that a sys- 3 Note that the maximization of “re-

ward” in the context of reinforcement
learning is essentially equivalent to
minimization of “cost” in optimal
control formulations.

tem model be known! This paradigm can be represented by Figure 3.1, where it
can be seen that given a control input the environment specifies the next state
and reward, and the environment can be considered to be a black box (it is not
necessarily known how the state is generated, nor the reward computed).

Figure 3.1: In reinforcement
learning problems, the robot
(agent) learns how to make de-
cisions by interacting with the
environment.

2 model-based and model-free rl for robot control

To account for this model uncertainty (which is notably distinct from the
state transition uncertainty inherent in a stochastic but known system model,
as considered in the previous chapter), an agent must instead learn from its
experience to produce good policies. Concisely, RL deals with the problem
of how to learn to act optimally in the long term, from interactions with an
unknown environment which provides only a momentary reward signal.

RL is a highly active field of research, and has seen successes in several appli-
cations including acrobatic control of helicopters, games, finance, and robotics.
In this chapter the fundamentals of reinforcement learning are introduced, in-
cluding the formulation of the RL problem, RL algorithms that leverage system
models (“model-based” methods; value iteration/dynamic programming and
policy iteration), and a few RL algorithms that do not require system models
(“model-free” methods; Q-learning, policy gradient, actor-critic).

3.1 Problem Formulation

The problem setting of reinforcement learning is similar to that of stochastic
sequential decision making from the previous chapter, but here we will adopt
slightly different notation more consistent with how Markov Decision Processes
(MDPs) are typically framed in this community.4 The state and control input for 4 The fields of optimal control and

reinforcement learning have significant
overlap, but each community has
developed its own standard notation.
Most often, the state in the optimal
control community is represented
by x and in the RL community as s.
Similarly, in control theory the control
input is u while in the RL community it
is referred to as an action a.

the system is denoted as x and u, and the set of admissible states and controls
are denoted as X and U . However, the stochastic state transition model will
now be written explicitly as a probability distribution (where before this was
implicit in the influence of the stochastic variables w on the system dynamics f):

p(xt | xt−1, ut−1), (3.1)

which is the conditional probability distribution over xt, given the previous
state and control. The environment also has a reward function which defines the
reward associated with every state and control

rt = R(xt, ut). (3.2)

The goal of the RL problem is to interact with the environment over a (possibly
infinite) time horizon and accumulate the highest possible reward in expectation.
To accommodate infinite horizon problems and to account for the fact that an
agent is typically more confident about the ramifications of its actions in the
short term than the long term, the accumulated reward is typically defined as
the discounted total expected reward over time

E

[
∞

∑
t=0

γtR(xt, ut)

]
, (3.3)

where γ ∈ (0, 1] is referred to as a discount factor. The tuple

M =
(
X ,U , p(xt | xt−1, ut−1), R(xt, ut), γ

)

principles of robot autonomy 3

defines the Markov Decision Process (MDP), the environment in which the
reinforcement learning problem is set.

In this chapter we will consider infinite horizon MDPs for which the notion
of a stationary policy π applied at all time steps, i.e.,

ut = π(xt), (3.4)

is appropriate. The goal of the RL problem is to choose a policy that maximizes
the cumulative discounted reward

π∗ = arg max
π

E
[∞

∑
t=0

γtR(xt, π(xt)))

]
(3.5)

where the expectation is notionally computed with respect to the stochastic
dynamics p, but in practice is estimated empirically by drawing samples from
the environment encodingM (i.e., in constructing π we may not assume exact
knowledge ofM).

3.1.1 Value function

A policy π defines a value function which corresponds to the expected reward
accumulated starting from a state x

Vπ(x) = E
[∞

∑
t=0

γtR(xt, πt(xt)) | x0 = x
]
, (3.6)

which can also be expressed in the tail formulation

Vπ(x) = R(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x))Vπ(x′). (3.7)

The optimal policy π∗ satisfies Bellman’s equation

Vπ∗(x) = V∗(x) = max
u∈U

(
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)V∗(x′)

)
π∗(x) = arg max

u∈U

(
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)V∗(x′)

) (3.8)

and also satisfies V∗(x) = Vπ∗(x) ≥ Vπ(x) for all x ∈ X for any alternative
policy π. That is, the optimal policy induces the maximum value function and
solves the RL problem of maximizing the accumulated discounted reward.

3.1.2 Q-function

Motivated by Bellman’s equation above, in addition to the (state) value function
Vπ(x) it makes sense to define the state-action value function Qπ(x, u) which
corresponds to the expected reward accumulated starting from a state x and
taking a first action u before following the policy π for all subsequent time
steps. That is,

Qπ(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)Vπ(x′). (3.9)

4 model-based and model-free rl for robot control

Similarly, the optimal Q-function is:

Q∗(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)V∗(x′),

where the shorthand notation Q∗(x, u) = Qπ∗(x, u) is used. Note that from the
Bellman equation (3.8) the optimal value function can be written as an optimiza-
tion over the optimal Q-function:

V∗(x) = max
u∈U

Q∗(x, u),

so,

Q∗(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)max
u′∈U

(
Q∗(x′, u′)

)
.

Therefore, instead of computing the optimal value function using value iteration
it is possible to deal directly with the Q-function!

3.2 Model-based Reinforcement Learning

Model-based reinforcement learning methods rely on the use of an explicit
parameterization of the transition model (3.1), which is either fit to observed
transition data (i.e., learned) or, in special cases, known a priori. For example,
for discrete state/control spaces it is possible to empirically approximate the
transition probabilities p(xt | xt−1, ut−1) for every pair (xt, ut) by counting
the number of times each transition occurs in the dataset! More sophisticated
models include linear models generated through least squares, or Gaussian
process or neural network models trained through an appropriate loss function.
Given a learned model, the problem of optimal policy synthesis reduces to the
sequential decision making problem of the previous chapter.

3.2.1 Value Iteration (Dynamic Programming)

While the dynamic programming algorithm was covered in the previous chap-
ter, it will also be included here in the context of the RL problem formulation.
In this case, the “principle of optimality” again says that the optimal tail policy
is optimal for tail subproblems, which leads to the recursion:

V∗k+1(x) = max
u∈U

(
R(x, u) + γ ∑

x′
p(x′ | x, u)V∗k (x′)

)
, (3.10)

which is commonly referred to as the Bellman recursion. In words, the optimal
reward associated with starting at the state x and having k + 1 steps to go can
be found as an optimization over the immediate control by accounting for the
(expected) optimal tail rewards. The full dynamic programming algorithm for
solving the RL problem (3.5) is given in Algorithm 1.

In the context of RL, this procedure is commonly referred to as value iteration
and in many cases it is assumed that the horizon N is infinite. For infinite-
horizon problems the “value iteration” in Algorithm 1 is performed either over

principles of robot autonomy 5

Algorithm 1: Dynamic Programming/Value Iteration (RL)

V∗0 (x) = 0, for all x ∈ X
for k = 0 to N − 1 do

V∗k+1(x) = max
u∈U

R(x, u) + γ ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X
π∗N−1−k(x) = arg max

u∈U
R(x, u) + γ ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X

return V∗0 (·), . . . , V∗N(·), π∗0 (·), . . . , π∗N−1(·)

a finite-horizon (which yields an approximate solution), or until convergence to
a stationary (i.e. time-invariant) optimal value function/policy5. 5 In the infinite horizon case, the opti-

mal value function is unique and the
optimal policy is stationary and deter-
ministic, but not necessarily unique.

To solidify the relationship between value iteration in the context of RL and
dynamic programming in the context of stochastic decision making from the
previous chapter, the inventory control example from the previous chapter is
revisited:

Example 3.2.1 (Inventory Control). Consider again the inventory control prob-
lem from the previous chapter, where the available stock of a particular item is
the state xt ∈ N, the control ut ∈ N adds items to the inventory, the demand wt

is uncertain, and the dynamics and constraints are:

xt = max{0, xt−1 + ut−1 − wt−1},
p(w = 0) = 0.1, p(w = 1) = 0.7, p(w = 2) = 0.2.

and
xt + ut ≤ 2.

Based on the dynamics, the probabilistic model (3.1) is given by:

p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 0) = {1, 0, 0},
p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 1) = {0.9, 0.1, 0},
p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 2) = {0.2, 0.7, 0.1},
p(xt = {0, 1, 2} | xt−1 = 1, ut−1 = 0) = {0.9, 0.1, 0},
p(xt = {0, 1, 2} | xt−1 = 1, ut−1 = 1) = {0.2, 0.7, 0.1},
p(xt = {0, 1, 2} | xt−1 = 2, ut−1 = 0) = {0.2, 0.7, 0.1},

where some transition values are not explicitly written due to the control con-
straints. Next, the reward function is defined as:

R(xt, ut) = −E
[
ut + (xt + ut − wt)

2],
= −

(
ut + (xt + ut − E[wt])

2 + Var(wt)
)
,

and a discount factor of γ = 1 is used. As in the previous chapter, this reward
penalizes (a negative reward is a penalty) ordering new stock and having avail-
able stock at the next time step (i.e. having to store stock).

Algorithm 1 can now be applied, starting with the value function with no
steps to go:

V∗0 (x) = 0,

6 model-based and model-free rl for robot control

and then recursively computing:

V∗1 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
= −1.3,

V∗1 (1) = max
u2∈{0,1}

−
(
u + (1 + u− 1.1)2 + 0.29

)
= −0.3,

V∗1 (2) = −
(
(2− 1.1)2 + 0.29

)
= −1.1,

where E[w] = 1.1 and Var(w) = 0.29. The optimal stage policies associated with
this step are:

π∗N−1(0) = 1, π∗N−1(1) = 0, π∗N−1(2) = 0.

In the next step:

V∗2 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗1 (x′) = −2.5,

V∗2 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗1 (x′) = −1.5,

V∗2 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗1 (x′) = −1.68,

with optimal stage policies:

π∗N−2(0) = 1, π∗N−2(1) = 0, π∗N−2(2) = 0.

Finally, in the last step:

V∗3 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗2 (x′) = −3.7,

V∗3 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗2 (x′) = −2.7,

V∗3 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗2 (x′) = −2.818,

with optimal stage policies:

π∗N−3(0) = 1, π∗N−3(1) = 0, π∗N−3(2) = 0.

These results are, in fact, identical to the results from the example in the pre-
vious chapter! The only difference is the formulation of the problem in the RL
framework instead of the stochastic decision making problem framework.

3.2.2 Policy Iteration

Another common algorithm that can be used to solve the reinforcement learning
problem (3.5) is policy iteration. The main idea of policy iteration is that if the
value function can be computed for any arbitrary finite horizon policy π =

{π0, π1, . . . , πN−1}, then the policy can be incrementally improved to yield a
better policy π′ = {π′0, π′1, . . . , π′N−1}.

principles of robot autonomy 7

Policy Evaluation: The first key element of the policy iteration algorithm is
policy evaluation, which is used to compute the value function Vπ

k (x) for a given
policy π. Policy evaluation is based on the recursion:

Vπ
k+1(x) = R(x, π(x)) + γ ∑

x′
p(x′ | x, π(x))Vπ

k (x′), (3.11)

which is very similar to the Bellman equation (3.8) except that there is no opti-
mization over the control (since it is fixed). The policy evaluation algorithm is
given in Algorithm 2.

Algorithm 2: Policy Evaluation
Data: π

Result: Vπ
0 (·), . . . , Vπ

N (·)
Vπ

0 (x) = 0, for all x ∈ X
for k = 0 to N − 1 do

Vπ
k+1(x) = R(x, πN−1−k(x)) + γ ∑x′ p(x′ | x, πN−1−k(x))Vπ

k (x′), for all
x ∈ X

return Vπ
0 (·), . . . , Vπ

N (·)

In the infinite-horizon case where a stationary policy is used, the iteration
in Algorithm 2 stops when the value function has converged to its stationary
value. Indeed, since the infinite horizon value function is the stationary point
of this recursion, it is possible to directly solve for it by setting both Vπ

k+1 =

Vπ
k = Vπ

∞ in (3.11). In the case of a discrete state space with N possible states,
this creates a linear system of N equations which can be used to solve for Vπ

∞
directly.

Policy Iteration Algorithm: The policy iteration algorithm incrementally updates
the policy by performing local optimizations of the Q-function. In particular, a
single iteration of the policy update is shown in Algorithm 3. It can be proven

Algorithm 3: Policy Iteration Step
Data: π

Result: π′

Vπ
0 (·), . . . , Vπ

N (·)←− PolicyEvaluation(π)
for k = 0 to N − 1 do

Qπ
k+1(x, u) = R(x, u) + γ ∑x′ p(x′ | x, u)Vπ

k (x′) for all x ∈ X
π′N−1−k(x) = arg max

u∈U
Qπ

k+1(x, u), for all x ∈ X

return π′ = {π′0, . . . , π′N−1}

theoretically that under the policy iteration algorithm the value function is
monotonically increasing with each new policy, and the procedure is run until
convergence. While policy iteration and value iteration are quite similar, policy
iteration can end up converging faster in some cases.

8 model-based and model-free rl for robot control

3.3 Model-free Reinforcement Learning

The value and policy iteration algorithms are applicable only to problems where
the modelM is known, i.e., they rely on direct access to the probabilistic system
dynamics p(xt | xt−1, ut−1) and reward function R(xt, ut), or at least learned ap-
proximations of these functions fit to observed data. Model-free RL algorithms,
on the other hand, sidestep the explicit consideration of p and R entirely.

3.3.1 Q-Learning

The canonical model-free reinforcement learning algorithm is Q-learning. The
core idea behind Q-learning is that it is possible to collect data samples (xt, ut, rt, xt+1)

from interaction with the environment, and over time learn the long-term value
of taking certain actions in certain states, i.e., directly learning the optimal Q-
function Q∗(x, u). For simplicity an infinite-horizon (N = ∞) problem will be
considered, such that the optimal value and Q-functions will be stationary, and
in particular the optimal Q-function will satisfy:

Q∗(x, u) = R(x, u) + γ ∑
x′

p(x′ | x, u)max
u′∈U

Q∗(x′, u′).

In a model-free context, the dynamics p above are notional (i.e., the problem
is described by some MDPM, we just don’t know exactly what it is).6 We may 6 Or even if we have a environment

simulator, in which case it could be
argued that the dynamics are exactly
described by the simulation code, the
dynamics are too complex/opaque to
be considered in this form.

instead rewrite the above equation in terms of an expectation over trajectory
samples drawn from p (i.e., drawn from the environment as a “black box”)
while implementing the policy ut = π∗(xt):

Q∗(xt, ut) = E
[
rt + γ max

u′∈U
Q∗(xt+1, u′)

]
,

or equivalently,

E
[(

rt + γ max
u′∈U

Q∗(xt+1, u′)
)
−Q∗(x, u)

]
= 0,

where (rt + γ maxu′∈U Q∗(xt+1, u′)) − Q∗(x, u) is known as the temporal differ-
ence error. The idea of Q-learning is that an approximation of the optimal Q-
function can be improved over time by collecting data and trying to ensure that
the above conditions holds. This leads to the Q-learning algorithm described
in Algorithm 4. The iterations of Q-learning, each a local deterministic correc-
tion to the Q-function, in aggregate aim to ensure that the expected temporal
difference error is 0.

Q-learning is referred to as a model-free method because it forgoes explicitly
estimating the true (unknown) system dynamics, and directly estimates the
Q-function. It is also called a value-based model-free method since it does not
directly build the policy, but rather estimates the optimal Q-function to implic-
itly define the policy. Q-learning is also called an off-policy algorithm because
the Q-function can be learned from stored experiences and does not require
interacting with the environment directly.

principles of robot autonomy 9

Algorithm 4: Q-learning

Data: Set S of trajectory samples {xt, ut, rt, xt+1}, learning rate α

Result: Q(x, u)
Initialize Q(x, u) for all x ∈ X and u ∈ U
for {xt, ut, rt, xt+1} ∈ S do

Q(xt, ut)←− Q(xt, ut) + α
(

rt + γ maxu∈U Q(xt+1, u)−Q(xt, ut)
)

return Q(x, u)

Q-learning can be guaranteed to converge to the optimal Q-function under
certain conditions, but has some practical disadvantages. In particular, unless
the number of possible states and controls are finite and relatively small, it
can be intractable to store the Q-value associated with each state-control pair.
Another disadvantage of Q-learning is that sometimes the Q-function can be
complex and therefore potentially hard to learn.

Fitted Q-learning: One variation of the Q-learning algorithm to handle large
or continuous state and control spaces is to parameterize the Q-function as
Qθ(x, u) and to simply update the parameters θ. This approach is also known as
fitted Q-learning. While this method often works well in practice, convergence is
not guaranteed.

A principled way of performing fitted Q-learning involves minimizing the
expected squared temporal difference error for the Q-function

E

[((
rt + γ max

u′∈U
Qθ(xt+1, u′)

)
−Qθ(xt, ut)

)2
]

.

For a given parameterization θ fitted Q-learning minimizes the total temporal
difference error over all collected transition samples

θ∗ = arg min
θ

1∣∣Sexp
∣∣ ∑
(xt ,ut ,xt+1,rt)∈Sexp

(
rt + γ max

u′∈U
Qθ(xt+1, u′)−Qθ(xt, ut)

)2

where Sexp denotes the experience set of all transition tuples with a reward sig-
nal. This minimization is typically performed using stochastic gradient descent,
yielding the parameter update

θ ← θ + α

(
rt + γ max

u′∈U
Qθ(xt+1, u′)−Qθ(xt, ut)

)
∇θQθ(xt, ut)

applied iteratively for each (xt, ut, xt+1, rt) ∈ Sexp.

3.3.2 Policy Gradient

The policy gradient method is another algorithm for model-free reinforcement
learning. This approach, which directly optimizes the policy, can be particu-

10 model-based and model-free rl for robot control

larly useful for scenarios where the optimal policy may be relatively simple
compared to the Q-function, in which case Q-learning may be challenging.

In the policy gradient approach, a class of stochastic7 candidate policies 7 A stochastic policy defines a distri-
bution over actions at a given state, is
useful for exploration, and sometimes is
even required for optimality.

πθ(ut | xt) is defined based on a set of parameters θ, and the goal is to di-
rectly modify the parameters θ to improve performance. This is accomplished
by using trajectory data to estimate a gradient of the performance with respect
to the policy parameters θ, and then using the gradient to update θ. Because
this method works directly on a policy (and does not learn a model or value
function), it is referred to as a model-free policy-based approach.

Considering the original problem (3.5), the objective function can be written
as:

J(θ) = E
[∞

∑
t=0

γtR(xt, πθ(ut | xt))
]
,

where the J(θ) notation is used to explicitly show the dependence on the pa-
rameters. Implementing a policy gradient approach therefore requires the com-
putation of ∇θ J(θ). One of the most common approaches is to estimate this
quantity using data, using what is known as a likelihood ratio method.

Let τ represent a trajectory of the system (consisting of sequential states and
actions) under the current policy πθ(ut | xt). As a shorthand notation, consider
the total discounted reward over a trajectory τ to be defined written as:

r(τ) =
∞

∑
t=0

γtR(xt, πθ(ut | xt), (3.12)

such that J(θ) can be expressed equivalently as J(θ) = E
[
r(τ)

]
. Additionally,

let the probability that the trajectory τ occurs be expressed by the distribution
pθ(τ). Then the expectation from the objective function can be expanded as:

J(θ) =
∫

τ
r(τ)pθ(τ)dτ,

and its gradient given by: From standard calculus ∇θ log pθ(τ) =
1

pθ(τ)
∇θpθ(τ), which replaces the use of

the gradient ∇θpθ(τ) with ∇θ log pθ(τ).
This is a very useful “trick” when it
comes to approximately computing the
integral, as will be seen shortly.

∇θ J(θ) =
∫

τ
r(τ)pθ(τ)∇θ log pθ(τ)dτ.

Rather than explicitly computing this integral it is much easier to approximate
using sampled data (i.e. sampled trajectories). This is possible since the integral
can be written as the expectation ∇θ J(θ) = E

[
r(τ)∇θ log pθ(τ)

]
, which can be

estimated using a Monte Carlo method. While in general a number of sampled
trajectories could be used to estimate the gradient, for data efficiency it is also
possible to just use a single sampled trajectory τ and approximate:

∇θ J(θ) ≈ r(τ)∇θ log pθ(τ). (3.13)

In particular the sampled quantities r(τ) can be directly computed from (3.12),
and it turns out that the term ∇θ log pθ(τ) can be evaluated quite easily as8: 8 Using Bayes’ rule: pθ(τ) =

p(x0)ΠN−1
t=1 p(xt | xt−1, ut−1)πθ(xt−1 |

ut−1). Then the log converts the prod-
uct into a sum.∇θ log pθ(τ) =

N−1

∑
t=0
∇θ log πθ(ut | xt). (3.14)

principles of robot autonomy 11

Importantly, notice that only the gradient of the policy is needed, and knowl-
edge of the transition model p(xt | xt−1, ut−1) is not! This occurs because only
the policy is dependent on the parameters θ.

In summary, the gradient of J(θ) can be approximated given a trajectories τ

under the current policy πθ by:

1. Compute r(τ) for the sampled trajectory using (3.12).

2. Compute ∇θ log pθ(τ) for the sampled trajectory using (3.14), which only
requires computing gradients related to the current policy πθ.

3. Approximate ∇θ J(θ) using (3.13).

The process of sampling trajectories from the current policy, approximating the
gradient, and performing a gradient descent step on the parameters θ is referred
to as the REINFORCE algorithm9. 9 There are some other modified ver-

sions of this algorithm, for example
some contain a baseline term b(x0) in
the gradient by replacing r(τ) with
r(τ)− b(x0) to reduce the variance of
the Monte Carlo estimate.

In general, policy-based RL methods such as policy gradient can converge
more easily than value-based methods, can be effective in high-dimensional or
continuous action spaces, and can learn stochastic policies. However, one chal-
lenge with directly learning policies is that they can get trapped in undesirable
local optima. Policy gradient methods can also be data inefficient since they re-
quire data from the current policy for each gradient step and cannot easily reuse
old data. This is in contrast to Q-learning, which is agnostic to the policy used
and therefore doesn’t waste data collected from past interactions.

3.3.3 Actor-Critic

Another popular reinforcement learning algorithm is the actor-critic algorithm,
which blends the concepts of value-based and policy-based model-free RL. In
particular, a parameterized policy πθ (actor) is learned through a policy gradi-
ent method along side an estimated value function for the policy (critic). The
addition of the critic helps to reduce the variance in the gradient estimates for
the actor policy, which makes the overall learning process more data-efficient10. 10 This is a similar variance reduction

approach to adding a baseline b(xτ) to
the REINFORCE. In fact the baseline is
chosen as the value function!

In particular, the policy πθ is again learned through policy gradient like in
the REINFORCE algorithm, but with the addition of a learned approximation of
the value function Vϕ(x) as a baseline:

∇θ J(θ) ≈
N−1

∑
t=0

(
r(τ)−Vϕ(x0)

)
∇θ log πθ(ut | xt).

Recall that the value function V(x) quantifies the expected total return starting
from state x (i.e. the average performance). Therefore the quantity r(τ)−Vϕ(x0)

now represents a performance increase over average. Of course in this method
the learned value function approximation Vϕ(x) is also updated along with the
policy by performing a similar gradient descent on the parameters ϕ.

12 model-based and model-free rl for robot control

3.4 Deep Reinforcement Learning

Neural networks are a powerful function approximator that can be utilized in
reinforcement learning algorithms.

Q-learning: In Q-learning the Q-function can be approximated by a neural
network to extend the approach to nonlinear, continuous state space domains.

Policy Gradient: In policy gradient methods, the policy πθ can be parameter-
ized as a neural network, enabling the policy to operate on high-dimensional
states including images (i.e. visual feedback)!

Actor-Critic: In actor-critic methods, both the policy πθ and the value func-
tion Vϕ can be parameterized as a neural network which often leads to a space
efficient nonlinear representations of the policy and the value function.

3.5 Exploration vs Exploitation

When learning from experience (e.g. using Q-learning, policy gradient, actor-
critic, deep RL, etc.) it is important to ensure that the experienced trajectories
(i.e. the collected data points) are meaningful! For example, an abundance of
data related to a particular set of actions/states will not necessarily be suffi-
cient to learn good policies for all possible situations. Therefore an important
part of reinforcement learning is exploring different combinations of states and
actions. One simple approach to exploration is referred to as ϵ-greedy explo-
ration, where a random control is applied instead of the current (best) policy
with probability ϵ.

However, exploration can lead to suboptimal performance since any knowl-
edge accumulated about the optimal policy is ignored11. This leads to the ex- 11 In other words, actions with known

rewards may be foregone in the hope
that exploring leads to an even better
reward.

ploration vs exploitation trade-off: a fundamental challenge in reinforcement
learning.

Bibliography

[1] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

[2] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press,
2018.

