
1
Introduction to Machine Learning for Robotics

Many algorithms and tools in robotic autonomy leverage models of the world
that are often based on first-principles: physics-based kinematic models are
used to design controllers, sensor models are used in localization algorithms,
and geometric principles are used in understanding stereo vision. However,
there are also many scenarios in robotics where these techniques may fail to
capture the complexity of unstructured real-world environments. For exam-
ple, how can a stop-sign be reliably detected in camera images when it could
be rainy, foggy, or dark out, or when the stop-sign is partially occluded? Are
there first-principles models that can accurately predict the behavior of a hu-
man driver, and distinguish between aggressive and defensive driving behavior?
How can a robot be programmed to pick up objects with an infinite number of
variations in size, shape, color, and texture? In the last few decades, advance-
ments in machine learning1 have led to start-of-the-art approaches for many 1 T. Hastie, R. Tibshirani, and J. Fried-

man. The elements of statistical learning:
data mining, inference, and prediction.
Springer, 2017

of these challenging problems2. This chapter presents an introduction to ma-

2 Of course in many settings it is benefi-
cial to use first-principles and machine
learning techniques in concert.

chine learning to provide a knowledge of the fundamental tools that are used
in learning-based algorithms for robotics, including computer vision, reinforce-
ment learning, and more.

Machine Learning

At their most fundamental level, machine learning techniques seek to extract
useful patterns from data3, and are typically classified as either supervised or 3 In many cases the data will come from

real world experiments, but in other
cases may come from simulation.

unsupervised.

Definition 1.0.1 (Supervised Learning). Given a collection of n data points:

{(x1, y1), . . . , (xn, yn)},

where xi is an input variable and yi is an output, the supervised learning problem is to
find a function y = f (x) that fits the data and can be used to predict outputs y for new
inputs x.

Definition 1.0.2 (Unsupervised Learning). Given a collection of n data points
{x1, . . . , xn}, the unsupervised learning problem is to find patterns in the data.

2 introduction to machine learning for robotics

Supervised learning problems, such as regression and classification4, are 4 In regression problems the output
y is continuous and in classification
problems the output y is discrete
(categorical).

generally more common in robotics applications and will be the focus of this
chapter. For example, robotic imitation learning-based controllers5 can be ex-

5 Imitation learning refers to the process
of learning to mimic a policy (e.g. from
an expert) through example decisions.

pressed as a regression problem where the input x is the state of the robot and y
is the action the robot should take. Classification problems also arise frequently
in robotic computer vision, for example to identify whether the image x belongs
to a particular class y (e.g. a dog or cat).

In both regression and classification problems, the learned function f is cate-
gorized as either parametric or non-parametric. Parametric functions are generally
more structured and can be written down in an analytical form6, while non- 6 The most basic parametric function

would be a linear function f (x) = Wx,
parameterized by the “weight” matrix
W.

parametric functions are generally defined by the data points themselves7. The

7 In the non-parametric k-nearest
neighbors method, the value f (x) is
defined by the value of the data points
yi corresponding to the k closest points,
xi , to x.

best choice between parametric or non-parametric functions is generally depen-
dent on the particular problem and the type of data available. However, some
of the most popular choices are parametric, such as polynomials and neural
networks.

1.1 Loss Functions

In supervised learning problems, a metric known as a loss function is used to
evaluate and compare candidate models f (x) that could be used to fit the data.
Many loss functions for supervised learning problems exist, but some of the
most common examples include the l2 and l1 loss (for regression) and the 0− 1
and cross entropy loss (for classification).

1. The l2 loss function is defined by:

L =
1
n

n

∑
i=1

(f (xi)− yi)
2, (1.1)

where the summation is over some set of data points (xi, yi). From this loss
function it can be seen that a penalty arises from the function f not perfectly
matching the data at the sampled data points, but most importantly that
the penalty is quadratic with respect to this residual. This loss function will
therefore favor more small residuals over a few large residuals, which tends
to make the model perform better “on average”. However this also makes the
l2 loss sensitive to outliers in the data, making the training less robust.

2. The l1 loss function is defined by:

L =
1
n

n

∑
i=1
| f (xi)− yi|. (1.2)

Unlike the l2 loss, this loss function only penalizes the absolute value of the
residual. Therefore this loss function will favor all residuals on a more equal
footing and generally leads to a more robust training procedure that is less
sensitive to outliers in the data.

principles of robot autonomy 3

3. The 0− 1 loss function is defined by:

L =
1
n

n

∑
i=1

1{ f (xi) 6= yi}, (1.3)

where 1{·} is the indicator function. This loss function can be used in clas-
sification problems and provides a loss of 1 whenever the classification is
incorrect, and 0 otherwise. However, the use of this loss function introduces
practical issues when training with gradient-based optimization, since this
function is either flat or not differentiable at all points in the domain.

4. The cross entropy loss function8 is defined by: 8 Cross entropy loss is more practical
than 0− 1 loss since it is a differentiable
function.

L = − 1
n

n

∑
i=1

yT
i log f (xi), (1.4)

and is a common loss function in classification problems. To get an intuitive
feeling for how the cross entropy loss works, consider a classification problem
where the classes are c ∈ {1, 2, . . . , C} and where the function f (xi) outputs
a vector of the probabilities of each class (which is normalized to sum to
1)9. Additionally, for each data point the vector yi is a “one-hot” vector10 9 This can be accomplished by using the

softmax function.
10 A one-hot vector is a vector with all
zeros and a single 1.

specified by the class associated with xi. Therefore the loss for a particular
data point can be written as:

−yT
i log f (xi) = −

[
0, . . . , 1, . . . , 0

] 
log f1(xi)

...
log fC(xi)

 = − log fc(xi),

where C is the number of classes, the 1 element in yi is in the position corre-
sponding to the correct class, and fc(xi) is the probability of the correct class
output by the model. Thus, to minimize the loss for this particular data point
it is good to make fc(xi) = 1 (in fact as fc(xi) −→ 0 the loss approaches in-
finity!). Cross entropy loss can also be derived from a statistical perspective,
where it can be shown to be the same as maximizing the log-likelihood over
all data points.

1.2 Model Training

In supervised learning problems with a predetermined parametric model (e.g.
linear model or neural network), the values of the parameters can be optimized
to best fit the data (i.e. minimize the specified loss function). This process of
parameter optimization is referred to as model training. While in some special
cases the optimal set of parameters can be computed analytically, it is more
common to search for a good set of parameters in an iterative fashion using
numerical optimization techniques.

4 introduction to machine learning for robotics

Example 1.2.1 (Linear Least Squares). One of the most fundamental regression
problems, linear least squares, can be solved analytically. In this problem, the
parametric model is a linear model11: 11 This approach can also be extended

to nonlinear settings through the use of
basis functions. In particular the model
becomes f (x) = θTφ(x), where φ(x) are
nonlinear basis functions (sometimes
referred to as features.

f (x) = θTx,

where x ∈ Rp is the input and θ ∈ Rp is the set of model parameters, and the
loss function is the l2 loss (1.1). Given n data points (xi, yi), the loss function can
be expressed in matrix form as:

L(θ) =
1
n
‖Y− Xθ‖2

2,

where the matrix Y ∈ Rn and X ∈ Rn×p are defined by the data as:

Y =


y1
...

yn

 , X =


xT

1
...

xT
n

 .

The parameters θ are then chosen to minimize the loss function by taking the
derivative:

dL
dθ

=
2
n

XTXθ − 2
n

XTY,

and setting it equal to zero, which gives θ∗ = (XTX)−1XTY.12 12 Note that directly computing the
inverse of XT X may be challenging, but
alternative numerical methods exist to
compute the value of θ∗ that satisfies
the necessary condition of optimality.

1.2.1 Numerical Optimization

In many cases parameter optimization cannot be performed analytically and
therefore numerical optimization algorithms are used. Two of the most fun-
damental algorithms for numerical optimization-based training of parametric
models are gradient descent and stochastic gradient descent13. 13 Gradient descent is referred to as a

first-order method.In gradient descent, the parameters θ ∈ Rp of a model fθ(x) are iteratively
updated by:

θ ←− θ − η∇θ L(θ),

where ∇θ L(θ) is the gradient of the loss function with respect to the parameters
and the hyperparameter η is referred to as the learning rate or step-size. By lever-
aging the gradient, this update rule seeks to iteratively improve the parameters
to incrementally decrease the loss.

Notice that the gradient of the loss can be written as:

∇θ L(θ) =
1
n

n

∑
i=1
∇θ Li(θ),

where Li is the term of the loss function associated with the i-th data point.
Therefore computing the gradient of the loss function could be computation-
ally intensive if the number of data points is very large. To address this issue,
stochastic gradient descent uses an approximation of the gradient computed by
randomly sampling the gradients over a smaller batch of data points S14: 14 The batch S is resampled at every

iteration of the algorithm.

principles of robot autonomy 5

∇θ L(θ) ≈ 1
|S| ∑

i∈S⊂{1,...,n}
∇θ Li(θ),

where |S| is the number of data points in the batch.
Beyond gradient descent approaches lie a broad set of additional numeri-

cal optimization algorithms that are commonly used in practice15. Often times 15 M. J. Kochenderfer and T. A.
Wheeler. Algorithms for Optimization.
MIT Press, 2019

these advanced methods may lead to faster learning rates or more robust learn-
ing, and some algorithms may also be more applicable to problems with larger
amounts of data or larger numbers of model parameters.

1.2.2 Training and Test Sets + Regularization

In supervised learning with parametric models, the goal is to train a model f (x)
that accurately predicts the output y for inputs x that are not seen in the data
set. In other words, the goal is to find a model that generalizes to unseen data.
It is important to note however that simply optimizing the loss function over a
dataset does not guarantee that the model generalizes well, since it is possible to
overfit the model to the data.

A model is overfit to a set of data if it predicts the set of data well (i.e. has a
low loss) but fails to accurately predict new data. To counter this issue, one very
common practice in machine learning is to split the full dataset into two parts:
a training set and a test set16. As the names suggest, the model can be trained 16 There isn’t an optimal way to split

the data, but common splits range
from 80/20 training/test to 50/50
training/test.

with the training data and then the test set can be used to verify whether over-
fitting has occured. To test for overfitting, the loss function can be evaluated
over both sets of data. Overfitting has occured if the training loss is significantly
lower than the test loss.

While splitting the data into training and test sets provides a good way to
verify whether the learned model generalizes well, there are also techniques
that can be employed in during the training process to avoid overfitting. In
particular, the most common technique is known as regularization. One form of
regularization is implemented by adding terms to the loss function to penalize
“model complexity”. For example, with a model fθ(x) parameterized by the
vector θ, two common forms of regularization include:

1. l2 regularization, which consists of the addition of the term ‖θ‖2 to the loss
function,

2. l1 regularization, which which consists of the addition of the term ‖θ‖1 to the
loss function.

1.3 Neural Networks

One very common parametric model used in machine learning is the neural
network17. Neural networks are models with very specific structures, consisting 17 Also known as the multi-layer percep-

tron.of a hierarchical sequence of linear and nonlinear functions, which makes them

6 introduction to machine learning for robotics

very powerful function approximators. Mathematically, neural networks are
typically described as a sequence of functions:

h1 = f1(W1x + b1),

h2 = f2(W2h1 + b2),

...

ŷ = fK(WKhK−1 + bK),

(1.5)

which is an easier notation than writing the equivalent composite function:

ŷ = fK(WK fK−1(. . .) + bK).

In this model, the parameters are the weights W1, . . . , WK and biases b1, . . . , bK,
and the structure of the model is predefined by the choice of the activation
functions f1, . . . , fK and the number of layers K. The intermediate variables
h1, . . . , hK−1 are the outputs of the hidden layers, aptly named since they are
not the input or the output of the model.

To fully specify the structure of the model, a practitioner needs to specify the
number of hidden layers18, the dimensionality of each of the intermediate vari- 18 Neural networks with many layers

are referred to as deep neural networks.ables hi (usually chosen to be the same for all hidden layers), and the activation
functions fi.

1.3.1 Activation Functions

Commonly used activation functions f1, . . . , fK in neural networks include sig-
moid functions, hyperbolic tangent functions, rectified linear units (ReLU), and
leaky ReLU functions19.

19 It is typical for the same activation
function to be used for all layers of the
network.

1. Sigmoid function (also denoted as σ(x)):

f (x) =
1

(1 + e−x)
,

2. Hyperbolic tangent function:

f (x) = tanh(x),

3. ReLU function:
f (x) = max{0, x},

4. Leaky ReLU function:
f (x) = max{0.1x, x},

It is important to note that each of these activation functions share two im-
portant characteristics: they are nonlinear and they are easy to differentiate. It
is critical that the activation function be nonlinear since a composition of lin-
ear functions will remain linear, and therefore no additional benefit is gained
in modeling capability by adding more than a single layer to the network. Dif-
ferentiability is also critical because the gradients must be easily computable
during training20. 20 While ReLU and leaky ReLU are not

strictly differentiable, this issue is easily
mitigated in practice.

principles of robot autonomy 7

Figure 1.1: Common activa-
tion functions used in neural
networks.

1.3.2 Training Neural Networks

Neural networks are trained with gradient-based numerical optimization tech-
niques, such as those mentioned in Section 1.2.1 (e.g. stochastic gradient de-
scent). Therefore once a particular loss function L has been chosen, the gra-
dients ∂L

∂θ must be computed for each parameter. Since neural networks can
contain a large number of parameters, this gradient computation must be ac-
complished in a computationally efficient way. In particular, the gradients are
computed using an algorithm referred to as backpropagation, which leverages the
chain rule of differentiation and the layered structure of the network.

As with other parametric models, it is very important to avoid overfitting
when training neural networks21. This can partially be accomplished using the 21 It is quite easy to overfit when train-

ing neural networks since they have
such a large number of parameters.

division of the dataset into training and test sets, as well as by using regulariza-
tion techniques as mentioned in Section 1.2.2. Another technique for avoiding
overfitting in neural networks is referred to as dropout, where some “connec-
tions” in the network are occasionally removed during the training process. This
essentially forces the network to learn more redundant representations, which
has been shown to improve generalization. Of course another useful technique
to avoid overfitting is just to have an extremely large dataset, but in many cases
this may not be very practical.

1.4 Backpropagation and Computational Graphs

From a theoretical standpoint, computing the gradients dL
dθ of the loss function

with respect to the parameters is relatively straightforward. However, from a
practical standpoint computing these gradients can be computationally expen-
sive, especially for complex models such as neural networks. Backpropagation22 22 Sometimes also referred to as auto-

differentiation.is an algorithm that addresses this issue by computing all required gradients in
an efficient way. Many software tools, such as PyTorch

(https://pytorch.org/) and Tensor-
Flow (https://www.tensorflow.org/)
will automatically be able to perform
backpropagation for a large class of
functions.

Backpropagation computes gradients by cleverly choosing the order in which
operations required to compute the gradient are performed. By doing so it seeks
to avoid redundant computations, and can in fact be viewed as an example
of dynamic programming. While in some simple cases the backpropagation

8 introduction to machine learning for robotics

algorithm may provide only a small advantage, in many cases (and in particular
for neural network training) backprop can be orders of magnitude faster than
naive approaches.

A computational graph is another practical tool that is useful when using the
backpropagation algorithm to compute gradients. A computational graph pro-
vides a way to express a mathematical function using representations from
graph theory. In particular the function is expressed as a directed graph where
the nodes represent mathematical operations or function inputs and the edges
represent intermediate quantities. Using a computational graph, a forward pass
through the graph (starting at the root nodes, which are function inputs) is
equivalent to evaluating the function.

This representation makes it very easy to see the structure of the mathemat-
ical operation that can be exploited by the backpropagation algorithm. As an
example, consider the function L(x, y) = g(f (x, y)) and its associated compu-
tational graph shown in Figure 1.2 (which includes the intermediate variable
z). Using the chain rule, the gradient of L with respect to x is ∂L

∂x = dL
dz

∂z
∂x . The

backpropagation algorithm uses this structure to convert the computation of
the gradient ∂L

∂x into a sequence of local gradient computations dL
dz and ∂z

∂x , corre-
sponding to each computation node in the graph. With this structure redundant
computation can be be avoided. For example, when computing ∂L

∂y the partial

gradient dL
dz can be reused.

Figure 1.2: Example compu-
tational graph for a function
L(x, y) = g(f (x, y)).

To summarize, the backpropagation algorithm follows the following basic
steps:

1. Perform a forward pass through the computational graph to compute any
intermediate variables that may be needed for computing local gradients23. 23 For example if g(z) = z2 the gradient

dg
dz = 2z depends on the current value
of z2. Starting from the graph output, perform a backwards pass over the graph

where at each computation node the local gradient of the node with respect
to its inputs and outputs is computed. Then, compute the gradient of the
graph’s output with respect to the inputs of the local computation node,
leveraging the chain rule and previously calculated gradients. In Figure 1.2,
the first step of backprop would be to compute ∂L

∂z = dg
dz , and the second step

would use ∂L
∂z to compute the remaining gradients ∂L

∂x and ∂L
∂y .

Example 1.4.1 (Training a Simple Model). Consider a supervised learning prob-
lem with a parametric model defined as:

f (x) = (x + a)(x + b),

principles of robot autonomy 9

where a and b are parameters of the model, and a l2 loss function (1.1) is used
for training. A computational graph for computing the loss from a single data
point with this model is shown in Figure 1.3.

Figure 1.3: Computational
graph for computing the loss
for a single data point for the
model f (x) = (x + a)(x + b)
with l2 loss (see Example 1.4.1).
The values (xi, yi) are the data
point, the model output is ŷ,
and z1, z2, z3 are intermediate
variables. The quantities a and
b are parameters of the model.

For this model and loss function the gradients required for training can be
computed analytically as:

∂Li
∂a

= −2(y− (x + a)(x + b))(x + b),

∂Li
∂b

= −2(y− (x + a)(x + b))(x + a).

Computing the gradients in this way (the naive approach) would require 7
operations each (4 sums and 3 multiplications), for a total of 14 operations.

Alternatively the gradients can be computed in a more efficient way using
backpropagation, which avoids redundant computations. This approach can be
viewed as taking a backward pass over the computation graph. Starting at the
output of the graph:

∂Li
∂z1

= 2z1.

Then moving on through the next operations and using the chain rule (and
reusing the previous computations):

∂Li
∂ŷ

=
∂Li
∂z1

∂z1

∂ŷ
= − ∂Li

∂z1
,

and:

∂Li
∂z2

=
∂Li
∂ŷ

∂ŷ
∂z2

=
∂Li
∂ŷ

z3,

∂Li
∂z3

=
∂Li
∂ŷ

∂ŷ
∂z3

=
∂Li
∂ŷ

z2.

Finally, the next step backward reaches the parameters a and b:

∂Li
∂a

=
∂Li
∂z2

∂z2

∂a
=

∂Li
∂z2

,

∂Li
∂b

=
∂Li
∂z3

∂z3

∂b
=

∂Li
∂z3

.

To actually compute the numerical values of these gradients:

1. First perform a forward pass through the network to compute the values z1,
z2, and z3 (5 operations).

2. Then perform the backward pass computations to compute ∂Li
∂z1

, ∂Li
∂ŷ , ∂Li

∂z2
, ∂Li

∂z3
,

∂Li
∂a , and ∂Li

∂b (4 operations).

Using backpropagation, only 9 operations are required to compute the gradients
∂Li
∂a , and ∂Li

∂b , which is a non-negligible reduction over the naive approach!

