
Principles of Robot Autonomy II
Markov decision processes and dynamic programming



Today’s lecture
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• Aim
• Learn the fundamental principles of Markov decision processes and dynamic 

programming

• Readings
• D. Bertsekas. Reinforcement Learning and Optimal Control, 2019. Chapters 1 

and 2.



Basic decision-making problem (deterministic)

• System: 𝐱!"# = 𝑓! 𝐱! , 𝐮! , 𝑘 = 0,… ,𝑁
• Control constraints: 𝐮!∈ 𝑈(𝐱!)
• Cost: 

𝐽(𝐱$; 𝒖$, … , 𝒖%&# ) = 𝑔% 𝐱% + 3
!'$

%&#

𝑔! 𝐱! , 𝐮!

• Decision-making problem:

𝐽∗(𝐱$) = min
𝐮!∈+ 𝐱! , 𝑘 '$,…,%&#

𝐽(𝐱$; 𝒖$, … , 𝒖%&# )
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Key points

• Discrete-time model
• Additive cost (central assumption)
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Principle of optimality

The key concept behind the dynamic programming approach is the 
principle of optimality
Suppose optimal path for a multi-stage decision-making problem is

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽01
• remaining decisions yield segments 𝑏 − 𝑒 with cost 𝐽12
• optimal cost is then 𝐽02∗ = 𝐽01 + 𝐽12
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 𝑒, then 𝑏 − 𝑒 is optimal 
path from 𝑏 to 𝑒
• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path from 𝑏 to 𝑒. Then

𝐽132 < 𝐽12
and

𝐽01 + 𝐽132 < 𝐽01 + 𝐽12 = 𝐽02∗
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Contradiction!



Principle of optimality

Principle of optimality (for deterministic systems): Let {𝐮!∗ , 𝐮#∗ , … , 𝐮$%#∗ } be 
an optimal control sequence, which together with 𝐱!∗ determines the 
corresponding state sequence {𝐱!∗ , 𝐱#∗ , … , 𝐱$∗ } . Consider the subproblem 
whereby we are at 𝐱&∗ at time 𝑘 and we wish to minimize the cost-to-go 
from time 𝑘 to time 𝑁, i. e.,

𝑔& 𝐱&∗ , 𝐮& + ∑'(&)#$%# 𝑔' 𝐱', 𝐮' + 𝑔$ 𝐱$

Then the truncated optimal sequence {𝐮&∗ , 𝐮&)#∗ , … , 𝐮$%#∗ } is optimal for 
the subproblem

• Tail of optimal sequences optimal for tail subproblems
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Applying the principle of optimality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path from 
𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal 
segment of this path

Hence, the optimal trajectory is found 
by comparing:

𝐶134 = 𝐽13 + 𝐽34∗

𝐶154 = 𝐽15 + 𝐽54∗

𝐶124 = 𝐽12 + 𝐽24∗



Applying the principle of optimality

• need only to compare the concatenations of immediate decisions 
and optimal decisions → significant decrease in computation  / 
possibilities 
• in practice: carry out this procedure backward in time
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Example
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Optimal cost: 18
Optimal path: 𝑎 → 𝑑 → 𝑒 → 𝑓 → 𝑔 → ℎ



DP Algorithm
• Start with

𝐽$∗ (𝐱$) = 𝑔$(𝐱$),   for all 𝐱$

• and for 𝑘 = 𝑁 − 1,… , 0, let

𝐽&∗ 𝐱& = min
𝐮!∈,(𝐱!)

𝑔 𝐱& , 𝐮& + 𝐽&)#∗ 𝑓 𝐱& , 𝐮& for all 𝐱!

Once the functions 𝐽!∗, … , 𝐽$∗ have been determined, the optimal 
sequence can be determined with a forward pass
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Comments

• discretization (from differential equations to difference equations)
• quantization (from continuous to discrete state variables / controls) 
• global minimum
• constraints, in general, simplify the numerical procedure 
• curse of dimensionality
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Basic decision-making problem (stochastic)

• System: 𝐱!"# = 𝑓! 𝐱! , 𝐮! , 𝐰! , 𝑘 = 0,… ,𝑁 − 1
• Control constraints: 𝐮!∈ 𝑈(𝐱!)
• Probability distribution: 𝑃!(⋅ |𝐱! , 𝐮!)
• Policies: 𝜋 = {𝜋$, … , 𝜋%&#},    where 𝐮! = 𝜋!(𝐱!)
• Expected cost: 

𝐽!(𝐱") = 𝐸𝐰!,%&",…,()* 𝑔( 𝐱( + )
%&"

()*

𝑔% 𝐱%, 𝜋% 𝐱% , 𝐰%

• Decision-making problem:

𝐽∗(𝐱$) = min
6

𝐽6(𝐱$)
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Key points

• Discrete-time model
• Markovian model
• Objective: find optimal closed-loop policy
• Additive cost (central assumption)
• Risk-neutral formulation 

Other communities use different notation: 
• Powell, W. B. AI, OR and control theory: A Rosetta Stone for stochastic 

optimization. Princeton University, 2012. 
http://castlelab.princeton.edu/Papers/AIOR_July2012.pdf 
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Principle of optimality

Principle of optimality (for stochastic systems): Let 𝜋∗: =
{𝜋$∗ , 𝜋#∗, … , 𝜋%&#∗ } be an optimal policy. Assume state 𝐱! is reachable. 
Consider the subproblem whereby we are at 𝐱! at time 𝑘 and we wish 
to minimize the cost-to-go from time 𝑘 to time 𝑁. Then the truncated 
policy {𝜋!∗ , 𝜋!"#∗ , … , 𝜋%&#∗ } is optimal for the subproblem

• tail policies optimal for tail subproblems
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DP Algorithm
DP Algorithm: For every initial state 𝐱!, the optimal cost 𝐽∗(𝐱!) is equal to 
𝐽!(𝐱!), given by the last step of the following algorithm, which proceeds 
backward in time from stage 𝑁 − 1 to stage 0:

𝐽((𝐱() = 𝑔((𝐱()

𝐽% 𝐱% = min
𝐮!∈-(𝐱!)

𝐸𝐰! 𝑔% 𝐱%, 𝐮%, 𝐰% + 𝐽%1*(𝑓% 𝐱%, 𝐮%, 𝐰% ,	 𝑘 = 0,… ,𝑁 − 1

Furthermore, if 𝐮&∗ = 𝜋&∗(𝐱&) minimizes the right-hand side of the above 
equation for each 𝐱& and 𝑘, the policy {𝜋!∗, 𝜋#∗, … , 𝜋$%#∗ } is optimal 
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Example: Inventory Control Problem (1/3) 

• Stock available 𝑥! ∈ ℕ, inventory 𝑢! ∈ ℕ, and demand 𝑤! ∈ ℕ
• Dynamics: 𝑥!"# = max(0, 𝑥! + 𝑢! −𝑤!)
• Constraints: 𝑥! + 𝑢! ≤ 2
• Probabilistic structure: 𝑝 𝑤! = 0 = 0.1, 𝑝 𝑤! = 1 = 0.7, and 
𝑝(𝑤! = 2) = 0.2
• Cost

𝐸 0 +)
%&"

2

( 𝑢% + 𝑥% + 𝑢% − 𝑤% 2)
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𝑔!( 𝑥!) 𝑔"( 𝑥" , 𝑢" , 𝑤")



Example: Inventory Control Problem (2/3) 

• Algorithm takes form for 𝑘 = 0,1,2

𝐽" 𝑥" = min
#$ %#$ &'(#

𝐸)# 𝑢" + 𝑥" + 𝑢" − 𝑤" & + 𝐽"*+ max 0, 𝑥" + 𝑢" −𝑤"

• For example
𝐽& 0 = min

%$ , #,+,&
𝐸)$ 𝑢& + 𝑢& − 𝑤& & = 

min
%$ , #,+,&

{𝑢& + 0.1 𝑢& & + 0.7 𝑢& − 1 & + 0.2 𝑢& − 2 &}

which yields 𝐽7(0) = 1.3, and 𝜋7∗(0) = 1
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Example: Inventory Control Problem (3/3) 

Final solution:
• 𝐽$(0) = 3.7, 
• 𝐽$(1) = 2.7, and 
• 𝐽$(2) = 2.818

(see this spreadsheet)
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https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit?usp=sharing


Difficulties of DP 

• Curse of dimensionality:
• Exponential growth of the computational and storage requirements
• Intractability of imperfect state information problems 

• Curse of modeling: if “system stochastics” are complex, it is difficult to 
obtain expressions for the transition probabilities 

• Curse of time
• The data of the problem to be solved is given with little advance notice 
• The problem data may change as the system is controlled—need for on-line 

replanning
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Next time
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