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Today’s lecture

* Aim
* Learn the fundamental principles of Markov decision processes and dynamic
programming

* Readings

* D. Bertsekas. Reinforcement Learning and Optimal Control, 2019. Chapters 1
and 2.
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Basic decision-making problem (deterministic)

e System: X411 = fi X, uy), k=0,...,N
 Control constraints: u,€ U(Xy)

* Cost:
N-1
J(Xo; Ug, -, Uuy—1) = gv(Xy) + z I Xk, uy)
k=0
* Decision-making problem:
J'(Xo) = min J(Xo; U, -, Un_1)

up€Uxy), k=0,..,.N—1
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Key points

* Discrete-time model
» Additive cost (central assumption)
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Principle of optimality

The key concept behind the dynamic programming approach is the
principle of optimality

Suppose optimal path for a multi-stage decision-making problem is

€

» first decision yields segment a — b with cost J
* remaining decisions yield segments b — e with cost J,
e optimal costisthen %, = J,» + Jpe
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-
Principle of optimality

* Claim:If a — b — e is optimal path from a to e, then b — e is optimal
pathfrombtoe

* Proof: Suppose b — ¢ — e is the optimal path from b to e. Then

]bce < ]be
and

Jab T Joce <Jap T+ Jre = ]Ze

Contradiction!
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-
Principle of optimality

Principle of optimality (for deterministic systems): Let {uy, u3, ..., uy_4} be
an optimal control sequence, which together with x;, determines the

corresponding state sequence {X;, X7, ..., Xy } . Consider the subproblem
whereby we are at x;, at time k and we wish to minimize the cost-to-go

fromtime ktotime N, i.e,

Yk (xl*c' u,) + Zgl_:}ﬁl Im (X, U )+ 9N (xy)

Then the truncated optimal sequence {u;, u; 4, ..., Uy_4 } is optimal for
the subproblem

* Tail of optimal sequences optimal for tail subproblems
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-
Applying the principle of optimality

Principle of optimality: if b — c is the
initial segment of the optimal path from
b to f,thenc — f is the terminal
segment of this path

Hence, the optimal trajectory is found
by comparing;:

Cbcf = Jpc T ]:f

Coar = Joa + Jar

Cbef = Jpe T ]Zf
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-
Applying the principle of optimality

* need only to compare the concatenations of immediate decisions
and optimal decisions — significant decrease in computation /
possibilities

* in practice: carry out this procedure backward in time
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Example

Optimal cost: 18
Optimalpath:.a - d—> e—> f—> g— h
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-
DP Algorithm

e Start with

InXN) = gyv(Xy), forallxy
eandfork =N —1,...,0, let
];;(Xk) = min g(xk; uk) + ];2+1(f(xk,uk)) for allxk

up€eU(xg)

Once the functions Jj, ..., Jy have been determined, the optimal
sequence can be determined with a forward pass
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Comments

« discretization (from differential equations to difference equations)

* quantization (from continuous to discrete state variables / controls)
 global minimum

* constraints, in general, simplify the numerical procedure

* curse of dimensionality
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Basic decision-making problem (stochastic)

e System: X1 = fi (X, U, W), k=0,..,N—1
 Control constraints: u,€ U(Xy)
* Probability distribution: Py (- | Xy, ug)
* Policies: Tt = {m, ..., Ty_1}, Whereu;, = m (Xy)
* Expected cost: .
Jz(X0) = Ew, k=0,..N—1 {gN(XN) + 2 i X, T[k(xk)»wk)}

k=0
e Decision-making problem:

J"(Xo) :mnin Jr(Xo)
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Key points

* Discrete-time model

* Markovian model

* Objective: find optimal closed-loop policy
» Additive cost (central assumption)
 Risk-neutral formulation

Other communities use different notation:

* Powell, W. B. Al, OR and control theory: A Rosetta Stone for stochastic
optimization. Princeton University, 2012.
http://castlelab.princeton.edu/Papers/AIOR_July2012.pdf
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-
Principle of optimality

Principle of optimality (for stochastic systems): Let ©*: =

{my, m7, ..., Ty_1} be an optimal policy. Assume state x,, is reachable.
Consider the subproblem whereby we are at x;, at time k and we wish
to minimize the cost-to-go from time k to time N. Then the truncated
policy {m,, T} 11, ..., Ty_1} IS Optimal for the subproblem

* tail policies optimal for tail subproblems
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DP Algorithm

DP Algorithm: For every initial state x, the optimal cost J*(X() is equal to
Jo(Xo), given by the last step of the following algorithm, which proceeds
backward in time from stage N — 1 to stage 0:

InXNn) = gn(Xn)

Jk(Xi) = min Ey {9k Xi, g, W) + Jier1 (fe Xio Ug, W)}, k=0,...,N—1
ukEU(xk)

Furthermore, if u;, = m; (x;) minimizes the right-hand side of the above
equation for each x;, and k, the policy {my, 4, ..., Ty_1} IS Optimal
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Example: Inventory Control Problem (1/3)

* Stock available x;, € N, inventory u;, € N, and demand w;, € N
* Dynamics: X;41 = max(0, x; + u; — wy)
* Constraints: x;, + u, < 2

* Probabilistic structure:p(wy, = 0) = 0.1, p(w, = 1) = 0.7,and
p(wy =2) = 0.2

* Cost

2
E{ 0 +z(uk + (Xk+ Uy — Wk)z)
\_Y_) k=0 " ' J

g3(x3) i (Xg, Ug, W)
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Example: Inventory Control Problem (2/3)

e Algorithm takes form for k = 0,1,2

Jk(xx) =  min  E,, {fug + (o + ug — wi)? + Jieyr (max(0,x, + uy —wy))}
O<sug=<2-xg

* For example

J2(0) = uZTEiOI}LZEWZ {uy + (up — wy)?}=

mion1 z{uz + 0.1(uy)? + 0.7(u, — 1) + 0.2(u, — 2)%}
U, =090,1,

which yields /,(0) = 1.3,and m,(0) =1

1/28/23 AA 274B | Lecture 3



Example: Inventory Control Problem (3/3)

Final solution:

.]O(O) — 37)
* Jo(1) = 2.7,and

- J,(2) = 2.818

(see this spreadsheet)
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https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit?usp=sharing

Difficulties of DP

* Curse of dimensionality:
* Exponential growth of the computational and storage requirements
* Intractability of imperfect state information problems

* Curse of modeling: if “system stochastics” are compley, it is difficult to
obtain expressions for the transition probabilities

* Curse of time
* The data of the problem to be solved is given with little advance notice

* The problem data may change as the system is controlled—need for on-line
replanning
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Next time

action
a,

ra’
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