
CS 237B: Principles of Robot Autonomy II
Problem Set 2: Grasping and Manipulation

Due Feb 16th, 2024 11:59PM

Submission Instructions

You will submit your homework to Gradescope. Your submission will consist of:

1. a single pdf with your written answers for report questions (denoted by the symbol). This must
be typeset (e.g., LATEX or Word).

2. a .zip folder containing your code for the programming questions (denoted by the symbol).

Honor Code

• Collaboration: You may collaborate with other students on the homework. However, each student
should independently write up their own solutions and clearly list the names of their collaborators
in their write-up.

• Committing code to GitHub: Please do not push your homework code to public GitHub repositories
(for example, a fork of our repository). If you wish to commit your solutions to GitHub, please create
a private repository by making a new copy of our repository, rather than forking it.

Introduction

For this homework, you will explore different elements of grasping and manipulation that may be based on
analytical or learning methods. In particular you will investigate the following:

1. How to test for force and form closure?

2. How to optimize grasp forces?

3. How to learn intuitive physics?

Further, in terms of software development, you will

• Use python and cvx to solve optimization problems

• Use Tensorflow

Starter code for this problem set has been made available online through github; to get started download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/CS237B_HW2.git.

1



Stanford Computer Science Winter 2024

Install Additional Software Dependencies

Homework 2 continues to use the virtual environment from the previous homework with added dependencies.
To maintain consistency within this class, we already listed all dependencies on requirements.txt in the git
repository you cloned. Navigate to the repo and activate your virtual environment. For Anaconda:

$ conda activate cs237b

Once you’re in the virtual environment, run:

$ pip install -r requirements.txt

Note for installation on M1 Macs (from the cvxpy website): If you experience an error when trying
to install cvxpy, this may be because you:

1. do not have cmake installed via Homebrew. You can install this by running brew install cmake

2. need to install the ECOS 2.0.5 wheel by running pip install ecos==2.0.5

Now we’re ready to go!

Problem 1: Form and Force Closure.

A desirable property for a grasp is that the contact forces applied by the hand are such that they prevent
contact separation and unwanted contact sliding. A special class of grasps are closure grasps that can be
maintained for every possible disturbance load.

In this problem, we will investigate two types of closure: form and force closure. For analyzing whether a
grasp is in form closure, we only take the normal forces into account that are applied at each contact. The
resulting wrenches have to positively span the wrench space such that the grasp can resist any disturbance
wrench.

The analysis to decide whether a grasp is in force closure is similar to form closure. The difference is that
now, we also take into account friction such that a full range of forces can be applied at each contact point.

(i) Explain why every form closure grasp is also a force closure grasp.

(ii) To achieve form closure for a 2D object, you need at least 4 contacts. To achieve form closure with
a 3D object, you need at least 7 contacts. Explain in your own words why this is the case.

(iii) Figure 1 shows five stationary fingers contacting a 2D, right-angled triangle. The object is in form
closure and therefore force closure. For a planar object, you need at least four contacts to achieve
form closure. Therefore, if we take away one finger, the object may still be in form closure. For which
subsets of four fingers is the object still in form closure? Prove your answer by visually analysing the
wrench space! Include annotated drawings in your answer.

Hint : You may either use the method that was demonstrated in the lecture, or use the Graphical
Planar Method explained in [1, Sec. 27.2.3].

(iv) A set of j contact wrenches is in form closure if the matrix F ∈ Rn×j (whose columns are made
up of the j contact wrenches) is full rank and there exist a set of positive coefficients k > 0 such that

2

https://www.cvxpy.org/install/


Stanford Computer Science Winter 2024

Figure 1: A right-angled triangle in con-
tact with five stationary fingers, yielding
form closure and therefore force closure.
Analyze the contact when one or more
fingers are removed. The triangle’s cen-
ter of mass is at (0, 0). The hypotenuse
of the triangle is 45◦ from the vertical on
the page, and contact normal 5 is 22.5◦

from the vertical.

1

0.5

0.5 c

h

f1

f2

f3

α ̂x

̂y

Figure 2: A uniform-density square re-
strained by three point contacts f1, f2
and f3. x̂ and ŷ denote the axes of the
reference frame.

Fk = 0. One way to find if k exists is to set up a linear program (LP):

minimize
k

1T k

subject to Fk = 0,

ki ≥ 1 i = 1, . . . , j

(1)

If F is full rank and the LP above has a solution, then a k satisfying the form closure condition exists.
If the F is not full rank or the LP is infeasible, then no such k exists.

First, implement wrench() in form_force_closure.py to construct a wrench from a force f applied at
a point p. In this problem, all values are defined in a reference frame whose origin is at the object’s
center of rotation. If τ is the torque applied by f at p, then the wrench is:

ω =

(
f
τ

)
(2)

Next, implement form_closure_program() and is_in_form_closure() in form_force_closure.py.
is_in_form_closure() should take in a list of forces acting on a planar or spatial body at a given list
of contact points and return whether the body is in first-order form closure.

There are a few unit tests included in test.py. These tests are not comprehensive, so you should add
your own (for example, by adding tests for part (iii)). This script will not be run by the autograder,
so feel free to modify it however you wish.

(v) For a planar rigid body, the test for force closure is equivalent to constructing a matrix F ∈ R3×2j

made up of the edges of the j friction cones, and finding a set of positive coefficients k > 0 such that
Fk = 0. Note that this can be solved by the same LP in (1). Also note that if some contact points are
frictionless, then there will be fewer than 2j columns, since frictionless contact points only contribute
one column to the F matrix.

3



Stanford Computer Science Winter 2024

For a spatial rigid body, we first approximate the friction cones with friction pyramids and then con-
struct F ∈ R6×4j from the four edges of the j friction pyramids (or less if some points are frictionless).
Implement this pyramid fitting in cone_edges() in form_force_closure.py. This function should also
handle the special case for planar friction cones.

Next, fill out is_in_force_closure() to return whether a set of wrenches is in force closure.

Run test.py to test your implementation with a few unit tests. Again, these tests are not comprehen-
sive, so you should add your own.

(vi) Figure 2 shows a square that is restrained by three contact points: f1 is a point contact with
friction coefficient µ, while f2 and f3 are frictionless point contacts. The square has uniform density.
First, derive the minimum value of µ for this grasp to yield force closure, as a function of h and c!
Next, if c = 1

4 and h = 1
2 , compute the minimum value of µ for the grasp to result in force closure.

You may want to use is_in_force_closure() from (v) to test if your derivation is correct!

4



Stanford Computer Science Winter 2024

Problem 2: Grasp Force Optimization.

While the force closure test implemented in Problem 1 tells us whether a grasp is in force closure or not, it
does not tell us how to find a set of forces that has to be applied at each contact to resist a given disturbance
wrench. In this problem, we explore an optimization method for computing the set of optimal forces that
allow the grasp to be maintained under a given disturbance.

Suppose we have a rigid object grasped at M contact points, with positions p(i) ∈ R3 for i = 1, . . . ,M in a
global coordinate system. Let f (i) ∈ R3 be the force applied at contact point p(i), with a local coordinate
system defined such that x and y are tangent to the object surface at p(i) and z is normal to the surface
pointing inwards. To prevent slip, we need to constrain the contact forces to lie within the friction cone:√

f
(i)2
x + f

(i)2
y ≤ µif

(i)
z . (3)

To ensure that the grasp is stable, we also need to ensure a force equilibrium with total external force f ext

and torque τ ext acting on the object:
M∑
i=1

T (i)f (i) + f ext = 0 (4)

M∑
i=1

P
(i)
[×]T

(i)f (i) + τ ext = 0 (5)

Here, T (i) is the 3× 3 rotation matrix that transforms from the local frame at p(i) to the global frame, and
P

(i)
[×] is the skew-symmetric cross product matrix:

P
(i)
[×] =

 0 −p
(i)
z p

(i)
y

p
(i)
z 0 −p

(i)
x

−p
(i)
y p

(i)
x 0

 . (6)

Given the friction cone and force equilibrium constraints, we can set up a convex optimization problem
to find the optimal set of contact forces for a stable grasp, by some measure of optimality. If we want to
minimize the maximum magnitude of the M contact forces, we can express our optimization problem as:

minimize
f (1), . . . , f (M)

max
{
∥f (1)∥, . . . , ∥f (M)∥

}
subject to

√
f
(i)2
x + f

(i)2
y ≤ µif

(i)
z i = 1, . . . ,M,

M∑
i=1

T (i)f (i) + f ext = 0,

M∑
i=1

P
(i)
[×]T

(i)f (i) + τ ext = 0

(7)

To solve the optimization problem, we need to rewrite (7) in a standard format that off-the-shelf convex
optimization solvers can handle. Specifically, our optimization is a second order cone program (SOCP),
where the friction cone constraint is a quadratic (aka second order) cone. The canonical form of an SOCP
is:

minimize
x

hTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di i = 1, . . . ,m,

Fx = g

(8)

where the problem parameters are h ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, F ∈ Rp×n, and
g ∈ Rp. x ∈ Rn is the optimization variable.

5



Stanford Computer Science Winter 2024

(i) Let ωext = (f ext, τ ext) be the external wrench represented as the concatenation of the external
force and torque. Equations (4) and (5) can be written as a single matrix equation:

Φf + ωext = 0

Show how to write Φ (also known as the grasp map) and f in terms of T (i), P (i)
[×], and f (i).

(ii) The objective of the SOCP form is the linear function hTx. While the objective in Eq. (7) is not
linear, it can be recast into a linear form by adding second order cone constraints. Show how to do
this.

Hint : define a new auxiliary scalar variable s and create M cone constraints involving f (i) and s.

(iii) Now that objective, friction cone constraints, and force equilibrium constraints have been refor-
mulated, we are closer to implementing the SOCP. The last step is to combine all the variables so we
can send them to the SOCP solver directly. Define the variable x, along with the SOCP parameters
A, b, c, d, g, h, and F .

While your implementation should handle both the planar (2D) and spatial (3D) cases, for this written
part, you only need to write out these terms for the spatial case.

(iv) Implement the SOCP above with cvxpy in the grasp_optimization() function in grasp_optimization.py.
You can test your implementation with test.py, but as usual, you should add your own tests.

(v) This SOCP solves for the optimal grasping force given a single external wrench. To achieve force
closure, we need to be able to compute a set of contact forces for any given external wrench. One
straightforward way to do this would be to simply solve a new SOCP for every new external wrench,
but this could become computationally expensive. To avoid solving the SOCP repeatedly, we can
precompute solutions of the SOCP for the 12 signed unit vector wrenches in R6:

ω+
1 =

(
1 0 0 0 0 0

)
ω−
1 =

(
−1 0 0 0 0 0

)
...

ω+
6 =

(
0 0 0 0 0 1

)
ω−
6 =

(
0 0 0 0 0 −1

)
Let f+

1 , f−
1 , . . . , f+

6 , f−
6 be the optimal grasp forces for the unit wrenches above. Then, a feasible set

of contact forces for any given wrench can be taken as a linear combination of these 12 optimal grasp
forces. This solution is suboptimal, but easy to compute.

f = (ωext
1 )+f

+
1 + (ωext

1 )−f
−
1 + · · ·+ (ωext

6 )+f
+
6 + (ωext

6 )−f
−
6 (9)

ωext
i is the ith component of the external wrench, and (x)+ = max{0, x} and (x)− = max{0,−x} are

functions that take the positive and negative parts of x.

Implement this heuristic in the precompute_force_closure() function in grasp_optimization.py.
Note that this function returns another function force_closure() that accepts an external wrench
as an argument and returns f using the precomputed solutions.

6



Stanford Computer Science Winter 2024

Problem 3: Learning Intuitive Physics.

Learning physical properties of objects from visual data is an open research problem in robotics. The Physics
101 dataset contains over 17,000 video clips of objects of a wide range of materials, shapes, colors, and sizes
that are being perturbed in various ways: dropped onto hard surfaces, dropped into water, attached to
springs, collided with other objects, etc. The goal is to learn an intuitive physics model from this data that
allows a robot to predict how the world changes when it interacts with it.

Each experiment has a set of observable outcomes, like object velocity, bounce height, acceleration in water,
etc. The Physics 101 paper [2] proposes a model that predicts the outcome of an experiment as a function
of latent, i.e. not directly observable, physical properties like mass, density, and coefficient of friction, which
are shared across experiments. The proposed model has the physical laws built into the network structure
such that by training it to predict experiment outcome, it has to internally estimate the relevant physical
properties.

In this problem, we will take a subset of the data to learn just one physical property: the coefficients of
friction of objects sliding down a ramp. In this experiment, the objects start at rest on either of two ramps
with a 10◦ and 20◦ incline. If the ramp is steep enough, then the object will slide down the ramp with
a certain acceleration. Starting with Newton’s second law of motion, we can write the acceleration as a
function of the friction coefficient:

F = ma = mg sin θ − µmg cos θ (10)
a = g(sin θ − µ cos θ) (11)

Here, m is the mass of the object, a is the acceleration, θ is the incline angle of the ramp, g is acceleration
due to gravity, and µ is the coefficient of friction between the object and ramp.

First, download the Physics 101 dataset and extract the contents to the Problem_3 directory. The data
should end up as a folder called Problem_3/phys101.

While the dataset contains full videos of the physics experiments, we are only interested in using the first
frames of each video to train our neural network. To speed up the training process, we have preprocessed
the video frames and exported them as jpg images. Download the following link and extract its contents to
the Problem_3 directory:

https://drive.google.com/file/d/1BdjezenkQD5ur-cfjS-yFA4oPOv4e68n/view?usp=sharing

It should end up as a folder called Problem_3/frames.

(i) Implement Eqn. (11) as a Tensorflow layer with the AccelerationLaw class in model.py. This layer
takes in the friction coefficient µ and ramp incline θ as input and outputs the predicted acceleration
of the object. θ is given to us in the dataset, but µ will be generated by our neural network.

(ii) Implement the build_model() function in model.py. Pay close attention to the model description
in the comments. Specifically, the last two layers before the acceleration prediction layer should output
a probability distribution of the object’s material type and the friction coefficient of each material type.

Let pi be the probability that the object is of material type i and µi be the friction coefficient of
material i. Then, the friction coefficient of the object can be computed as:

µpred =
∑
i

piµi (12)

In our network, pi is implemented as a softmax layer, and µi as a linear layer.

The rest of the model is left open for you to design. We use a small 2-layer CNN as a baseline, but
you may try experimenting with things like using the pretrained Inception-v3 network from HW1!

7

http://phys101.csail.mit.edu
http://phys101.csail.mit.edu
http://phys101.csail.mit.edu
https://drive.google.com/file/d/1BdjezenkQD5ur-cfjS-yFA4oPOv4e68n/view?usp=sharing


Stanford Computer Science Winter 2024

(iii) Finally, implement the loss() function in model.py. For a batch of B samples, this should be the
L2 norm of the prediction error: √√√√ B∑

i=1

(
y(i) − ŷ(i)

)2
where y(i) is the i-th sample of the batch and ŷ(i) is its prediction.

(iv) Train your neural network by running train.py and report the training and validation losses. For
comparison, our simple CNN achieves a validation loss less than 5, computed over a batch of B = 32
samples.

(v) Run test.py to visualize your network’s predictions on the validation set. How confident is its
predictions of the material class (p_class)? Why are some µi (mu_class) negative? Can you think of
a way to force the neural network to output positive µi? (You don’t need to implement this).

(vi) To compare this network with embedded physics to a standard baseline, implement the
build_baseline_model() function in model.py. The structure of this baseline network should match
the physics network up until the p_class layer. Instead of outputting probabilities pi, the network
should directly output a scalar value through a fully connected layer that represents the predicted
acceleration.

(vii) Train this baseline network by running train.py --baseline and report the training and validation
losses. How does it compare to the physics network? What are some explanations for this result?

Do not worry about finetuning this baseline network to improve its performance. Our purpose here is
simply to see how the special structure of the physics network helps it learn better for our problem.

8



Stanford Computer Science Winter 2024

References

[1] I. Kao, K. M. Lynch, and J. W. Burdick, “Contact modeling and manipulation,” in Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Springer Publishing Company, Incorporated, 2016, ch. 37,
pp. 931–954.

[2] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Freeman, “Physics 101: Learning physical
object properties from unlabeled videos,” in British Machine Vision Conference, 2016.

9


