
CS 237B: Principles of Robot Autonomy II
Problem Set 3: Human-Robot Interaction

Due March 8th, 2024 11:59PM

Submission Instructions

You will submit your homework to Gradescope. Your submission will consist of:

1. a single pdf with your written answers for report questions (denoted by the symbol). This must
be typeset (e.g., LATEX or Word).

2. a .zip folder containing your code for the programming questions (denoted by the symbol). Also
include the policies folder in your submission.

Honor Code

• Collaboration: You may collaborate with other students on the homework. However, each student
should independently write up their own solutions and clearly list the names of their collaborators
in their write-up.

• Committing code to GitHub: Please do not push your homework code to public GitHub repositories
(for example, a fork of our repository). If you wish to commit your solutions to GitHub, please create
a private repository by making a new copy of our repository, rather than forking it.

Introduction

For this homework, you will explore different elements of human-robot interaction. In particular you will
investigate some basics of

1. Imitation learning,

2. Intent inference, and

3. Shared autonomy

Imitation learning will form the biggest chunk of the homework, and so it will require a good deal of
programming and neural network training.

In terms of software development, you will use Tensorflow and the simplistic 2D driving simulator CARLO
in this assignment. While CARLO is publicly available at https://github.com/Stanford-ILIAD/CARLO, we
made some changes for this homework, and you will therefore use the version we provide.
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The problems in this homework are dependent on each other, so you must solve them sequentially1.

Starter code for this problem set has been made available online through github; to get started download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/CS237B_HW3.git.

Install Additional Software Dependencies

Homework 3 continues to use the virtual environment from the previous homeworks with added dependencies.
To maintain consistency within this class, we already listed all dependencies on requirements.txt in the git
repository you cloned. Navigate to the repo and activate your virtual environment. For Anaconda:

$ conda activate cs237b

Once you’re in the virtual environment, run:

$ pip install -r requirements.txt

Now we’re ready to go!

Problem 1: Getting Started

(i) Weight initialization is an important consideration in the design of a neural network model. Explain
what problems or advantages may arise in a deep neural network if we initialize all weights and biases
with 0.

(ii) The data you are going to use in this homework is complex and requires modeling nonlinearities.
Often in such cases, it becomes very important how the weights are initialized for training time and
finding better optima. Read about “Xavier initialization" (first proposed in [1]) and explain what
it is trying to do and why it is helpful. In your codes for the subsequent problems, use Xavier
initialization for the weights you are going to train2. You may manually implement it or you may
use tf.keras.initializers.GlorotUniform.

(iii) In the starter code we provided for this homework, we incorporated a different optimizer called
Adam [3]. Read about Adam optimizer, and explain how it might be helpful to accelerate learning
or how it might bring other advantages. Also discuss the potential drawbacks you think Adam might
have.

(iv) Let’s say you are training a neural network using SGD in two different ways: (1) You train the
network with some constant learning rate α for 500 epochs3. For each epoch, you record the batches
you used. (2) Using the same initialization and same batches for every epoch, you train the network
with the same learning rate α for 250 epochs, and then stop the execution. You then restart the
optimization and train for another 250 epochs starting from the resultant network of the previous 250
epochs, again by following the batches of (1). So you exactly followed (1) in (2), but stopped and
restarted the optimization once. Would you obtain the same network from (1) and (2)? What if you
repeat the same experiment using Adam optimizer? Explain.

1In particular, Problems 2-4 rely on Problem 1; Problems 3-4 rely on Problem 2.
2If you want to use Kaiming initialization [2], that should also work.
3An epoch consists of several optimization iterations where each data sample is seen by the network exactly once.
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In this homework, you will work in the driving setting. Particularly, you are going to implement various
imitation learning models, and then use them for intent inference and shared autonomy. Being interested in
directly learning policies as opposed to learning reward functions first, we model the driving environment as
a partially observable Markov decision process (POMDP): ⟨S,O,Ω,A, f⟩, where S is the set of states, O the
set of observations, Ω is a probability distribution over the set of observations given the state, i.e. Ω(o | s)
gives the probability of observing o ∈ O while the system state is s ∈ S. For example, in an environment
with multiple vehicles, s ∈ S will contain the states (positions, velocities, etc) of all the vehicles, whereas
o ∈ O might be missing the information about the vehicles that are occluded behind buildings. Or in a
single-vehicle scenario, o ∈ O might have only noisy measurements of the states. A denotes the set of
actions. For driving, we assume the actions are two-dimensional: steering angle and throttle. While braking
could be encoded as a different action dimension, we assume negative throttle will correspond to braking.
Finally, f gives the transition probabilities. That is, f(s′ | s, a) is the probability of reaching state s′ ∈ S
from state s ∈ S by taking action a ∈ A.

There are many open-source 3D driving simulators, such as CARLA [4], which are based on game engines
to provide realistic dynamics and visuals. However, setting up CARLA and training driving policies on raw
camera input (or Lidar data) require both a powerful computing infrastructure and a lot of effort. You will
instead use CARLO (short for CARLA - Low Budget), which is a very simplistic 2D driving simulator [5]
that uses the bicycle model to simulate vehicles [6].

Feel free to interactively play with CARLO in some scenarios we provide by running

python play.py --scenario intersection

where you can replace scenario name as “intersection” or “lanechange”. These scenarios are also visualized in
Fig. 1. In the code, you can see the use of step function, which transitions the environment from its current
state to the next state given the action and returns the new observation. Mathematically, it first draws a
sample from f(· | s, a) where s ∈ S is the current state, and then returns a sample from the observation
distribution Ω conditioned on the new state.
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(a) Intersection Scenario (b) Lanechange Scenario

Figure 1: Visualizations of the two CARLO scenarios you will use in this homework. In the
intersection scenario, the goal is to stay on the right lane and turn left, go straight or turn right
without having a collision with the pedestrians standing in the two corners of the intersection
and without crashing into the buildings. Every time the scenario is initiated, the intersection
is in a different location. The agent is allowed to observe: the car’s position, speed, heading
angle and the location of the intersection. In the lanechange scenario, the goal is to follow any
lane without going off the road. The agent is allowed to observe: the car’s position, speed and
heading angle.
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Problem 2: Behavior Cloning

Behavior cloning is the simplest imitation learning method that dates back to 1989 when ALVINN was
proposed as a method for autonomous driving [7]. To understand how behavior cloning works, let’s first
define an expert policy in the POMDP we defined in Problem 1: Let π∗ denote an expert policy such that
π∗(a | o, g) is the probability of taking action a ∈ A when the agent observes o ∈ O and the goal is g ∈ G.
In driving, G may consist of possible destinations. For example in the intersection scenario (see Fig. 1a), G
might be {“left”, “straight” , “right”}, and in the lanechange scenario (see Fig. 1b) it might be {“left”, “right”},
which represent the lane the expert wants to follow. Throughout the homework, we will assume G is a
discrete set.

Let’s assume we have access to a data set for each g ∈ G, that consists of (o, a) pairs, where each pair is
obtained such that a is a sample drawn from π∗(· | o, g). Let’s denote each such data set Dg = {(o(i), a(i))}Ni=1

where N is the number of data samples4. Our goal is then to recover π∗ using these data sets.

For this homework, we collected hundreds of expert demonstrations in the two scenarios with all the different
goals. These data sets are in the data folder5. Now, you are going to implement behavior cloning to learn a
policy that imitates the expert policy.

(i) The most straightforward way to perform behavior cloning is to assume there exists an underlying
deterministic policy, but the data set contains some noise in the actions. Then, you can simply try
to learn a function h(o, g) that outputs the estimated expert action. Modeling this function as a
neural network, let’s write it as hθ(o, g) where θ denotes the network parameters (weights and biases).
Assuming a loss function L between two actions, write an optimization problem to learn the expert
policy by optimizing θ.

(ii) Fill in the missing parts of train_il.py to solve the optimization problem you defined in the
previous question. You can use any loss function that you think is reasonable. You can also design
your neural network structure however you wish. In our experience, small networks were able to
efficiently recover the expert policy. Do not forget to use Xavier initialization for the neural network
weights! Additionally, pay attention to what your neural network is / should be able to output.

After filling in the training code, run

python train_il.py --scenario intersection --goal left
--epochs <number_of_epochs> --lr <learning_rate>

to train a policy for the intersection scenario for the goal of turning left. You should set the number
of epochs and the learning rate for the Adam optimizer. In our experience, the training should take
around 5 minutes. Once the number of epochs is completed, the code is going to save the policy in the
policies folder. If you want to continue to train from the latest saved policy, simply add --restore
in the command above. After training, test your policy by running:

python test_il.py --scenario intersection --goal left --visualize

You should be able to see at least a few successful left-turns out of 10 episodes. If you are not satisfied
with the result, you may want to play with the learning rate, number of epochs, and most importantly
the loss function. For example: You may want to change how you weigh different terms of the actions
in the loss function. If your trained policy is not able to achieve proper steering, for example, then
perhaps you should penalize the differences in the steering dimension more heavily.

4N might be different for each scenario and goal, but let’s ignore this for notation simplicity.
5Each data set is given as a matrix. Each row is a time step in the POMDP. The last two columns are the actions that the

expert took when the observation is the remaining columns.
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Repeat what you did in this question for the “straight” and “right” goals by changing the --goal
argument. Make sure to use the same neural network structure for all three goals and obtain reasonably
well-performing policies6.

(iii) Describe the full training procedure you used for each goal (learning rate and the number of epochs;
also elaborate if you retrained the network using --restore and/or if you used different loss functions
for different goals).

(iv) Run

python test_il.py --scenario intersection --goal left

to test the policy without visualization and report the success rate you achieved (it will take a few
seconds and be printed on the terminal). Repeat this for all three goals.

(v) What loss function did you use? Write it mathematically. If you perfectly overfit the data, what
would be the minimum loss you see? Is it bounded below?

So far, you trained a neural network, for each goal, that outputs an action given an observation. It is a
deterministic function, which means you will get the exact same action if you feed the same observation.
While this is adequate in many situations, some applications require learning the distribution π∗(· | o, g).
For example, imagine you want the robot to predict what the human might do and then you are going to
optimize for the worst case. In such a setting, it is not enough to predict the expected human action, but
the distribution should be learned. To be able to learn the distribution, we are going to use a simple version
of Mixture Density Networks [8].

In this approach, the neural network outputs a distribution instead of an action sample. To be more precise,
the network is going to output the parameters of a distribution. In this homework, you are going to use a
Gaussian distribution, so the network should output two quantities: mean vector and covariance matrix.

(vi) You could further simplify the problem by assuming the action dimensions (steering and throttle)
are conditionally independent from each other, given the observation. Then you would need to learn
four scalars: µsteering, µthrottle, σ

2
steering, σ

2
throttle. The only constraint would be to make sure the last

two quantities are non-negative. This could be achieved by simply using a ReLU only for those two
nodes. However, this approach is too restrictive —we cannot just assume steering and throttle are
independent!

You will instead learn the entries of the mean vector and the covariance matrix. However, the covariance
matrix needs to be a positive semi-definite (PSD) matrix! How can you ensure this? HINT: AA⊤ is
always PSD for any matrix A.

(vii) To train the network that outputs a single bivariate Gaussian distribution for a given observation,
you are going to maximize the likelihood of the data set. Let’s denote the probability density of drawing
x from a bivariate Gaussian distribution with mean µ and covariance matrix Σ as N (x | µ,Σ). Let’s
also denote the mean vector and the covariance matrix produced by the neural network for observation
o(i) as µ(i) and Σ(i), respectively, i.e. hθ(o

(i)) = (µ(i),Σ(i)). Then, we can write the likelihood of an
entire data set as

Likelihood =

N∏
i=1

N
(
a(i) | µ(i),Σ(i)

)
6While you are allowed to change the loss function for different goals, this is not necessary in our experience.
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As this might be too small and cause numerical issues, you are going to use mean log-likelihood instead:

Mean Log-Likelihood =
1

N

N∑
i=1

log
(
N

(
a(i) | µ(i),Σ(i)

))
Since you will be maximizing this quantity, you can think of the negative mean log-likelihood as the
loss function. Then, if you perfectly overfit the data, what would be the minimum loss you see? Is it
bounded below?

(viii) Fill in the missing parts of train_ildist.py to solve the optimization problem described in the
previous question. You can design your neural network structure however you wish7. Repeat everything
you did in question (ii) of this problem for train_ildist.py. Training this neural network might be
much harder than the previous ones because of instabilities. While it is possible to train each network
in 15 minutes, hyperparameter tuning might make it take much longer. Consider adopting the following
hints to minimize the time you spend for training:

• Use really small (narrow and shallow) networks.
• Start training with some learning rate for a relatively small number of epochs, and then retrain

the network more by steadily decreasing the learning rate (and using --restore).
• If you don’t see a monotonically decreasing loss in the very beginning, then terminate the execution

and re-run, because initialization really matters. If you cannot avoid this situation, then decrease
your learning rate further and try again.

(ix) Describe the full training procedure you used to train the mixture density network for each goal
(learning rate and the number of epochs; also elaborate if you retrained the network using --restore
and/or if you used different loss functions for different goals).

(x) Run

python test_ildist.py --scenario intersection --goal left

to test the policy without visualization and report the success rate you achieved (it will take a few
seconds and be printed on the terminal). Repeat this for all three goals.

7Again, make sure to use the same neural network structure for different goals.
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Problem 3: Conditional Imitation Learning

(i) Using the same code you wrote in the previous question, run

python train_il.py --scenario intersection --goal all
--epochs <number_of_epochs> --lr <learning_rate>

to train a policy for the intersection scenario collectively for all goals. And check the result by running

python test_il.py --scenario intersection --goal all --visualize

What are some problems associated with this policy? Do you have control over which direction the
car is going?

Imagine you are in your autonomous vehicle. And every time it encounters an intersection, the car just takes
the same direction. Obviously, this is not desirable. Of course, one way to solve this problem is to allow the
user to select which goal to pursue and then use the corresponding policy trained with that specific goal.

However, data is a very expensive resource in many applications, so we don’t want to waste it by using it
only for one specific goal. Furthermore, training different neural networks for each goal might take too much
time. Conditional Imitation Learning (CoIL) has been proposed as a solution to this problem [9]. Take a
look at their Figure 3.

In their first approach (Fig. 3a of their paper), they feed the goal of the user (the high-level command) as
an input to the neural network. The output is then the action for this specific goal. In the second approach
(Fig. 3b), they use branching : The observations are fed into the first layers of the network. Depending on
the user-specified goal, the outputs of these first layers are fed into different last layers. They showed the
second approach works better. Therefore, you are going to implement the second approach.

(ii) Fill in the missing parts of train_coil.py to implement the second approach discussed above.
Note that you want to learn a mapping between observations and actions, so the network will not
output a distribution. You are again free to design your loss function, which may or may not be
different from the previous one. For training, run

python train_coil.py --scenario intersection --epochs <number_of_epochs>
--lr <learning_rate>

to train a CoIL policy for the intersection scenario. You can again use --restore if needed.

(iii) Test your trained CoIL policy for 10 episodes by running

python test_coil.py --scenario intersection --visualize

Don’t forget to provide high-level commands using the arrow keys in your keyboard! After you are
confident that the policy you trained achieves to reach the goals reasonably often (at least a few times),
run

python test_coil.py --scenario intersection --goal left

and report the success rate. Repeat this last step for every goal.

(iv) Describe the full training procedure you used (learning rate and the number of epochs; also
elaborate if you retrained the network using --restore).
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Problem 4: Intent Inference & Shared Autonomy

Referring back to Problem 2, it is often very useful to learn the expert’s policy as a distribution. One such
case is when we want to perform intent inference. In this problem, we are interested in predicting what goal
the user has based on their actions.

(i) In Problem 2 of this homework, you already implemented train_ildist.py which trains a neural
network that you can use to compute P (a | o, g). Now, we are interested in computing P (g | o, a).
Write this in terms of P (a | o, g) (and some other probability expressions).

Assuming a uniform prior over the goals (for P (g | o)), how can you compute P (g | o, a)?

(ii) Fill in the missing parts of intent_inference.py. And run

python intent_inference.py --scenario intersection

Drive the car using the arrow keys.

(iii) Running the above command, drive the car in each direction for 5 times. Out of the 15 episodes
you drove, how many of them ended up predicting the correct intent? What might be some reasons
why it fails? Discuss.

To give another example of when having a distribution over actions is useful, let’s consider a scenario when
the robot knows the optimal actions given the user goal. We are going to consider a setting where the user
is driving the car, but the robot also provides help. Mathematically, the user is going to take an action
aH ∈ A based on the observation o ∈ O and the goal g ∈ G they have. The robot is also going to take a
simultaneous action aR ∈ A, again based on the observation o ∈ O and the predicted user goal ĝ ∈ G. The
action being simultaneous means the robot does not know aH while taking aR. However, it has access to
the previous observations and human actions. The system is then going to evolve as

s′ ∼ f(· | s, aH + aR)

where we implicitly assume an addition operation is defined over A. This is an instance of shared autonomy
where the human and the user shares the control of the system.

For this question, let’s say the actions can be linearly combined, i.e. when adding two actions, you can
simply add the steering and throttle values.

(iv) We already know from the previous subproblems that we can use our trained neural networks to
predict the user’s goal. For the subsequent parts, run

python train_ildist.py --scenario lanechange --goal left
--epochs <number_of_epochs> --lr <learning_rate>

to train the mixed density network for the lanechange scenario. Again, you can use --restore argument
if needed. Also, remember the training hints we provided to speed up the process. Similar to before,
test the trained network by running

python test_ildist.py --scenario lanechange --goal left --visualize

Repeat the training and test for the “right” goal, too.
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You are going to use these networks to predict the user goal. For each goal g ∈ G and observation o ∈ O, let
m : G ×O → A be a function that gives the optimal action (with respect to the robot) to achieve the given
goal under the given observation. Then, at time step t, the robot should take an action aR to make sure

aR + Eg

[
aH | g, ot

]
= Eg

[
m(g, ot) | ot

]
=

∑
g∈G

P
(
g | ot−1, . . . , o0, at−1, . . . , a0

)
m(g, ot)

You can use different various heuristics to compute the probability term inside the summation by using the
probabilities P (g|ot−1, at−1), . . . , P (g|o0, a0). For example, you could take a moving average of these terms.
Let’s denote P

(
g | ot−1, . . . , o0, at−1, . . . , a0

)
as Pg for simplicity. Then,

aR =
∑
g∈G

Pgm(g, ot)− Eg

[
aH | ot, g

]
=

∑
g∈G

Pgm(g, ot)−
∑
g∈G

∑
aH∈A

PgP (aH | ot, g)aH

=
∑
g∈G

Pg

[
m(g, ot)−

∑
aH∈A

P (aH | ot, g)aH

]

where you can also obtain P (aH | ot, g) using the same mixture density networks.

(v) We further want to enforce some constraints on aR. Specifically, we don’t want the steering and
throttle provided by aR to be too large. Hence, you will simply apply a threshold to the computed
aR. From a human-robot interaction perspective, what is the reason we are enforcing this constraint
on aR?

(vi) Fill in the missing parts of shared_autonomy.py that implements what we discussed above. Then,
run

python shared_autonomy.py --scenario lanechange

and control the vehicle’s steering using the arrow keys in your keyboard. In this part, you are controlling
only the steering, and the throttle is automatically determined.

(vii) When you control the vehicle with shared autonomy, do you feel the help by the robot? Is it really
helpful or does it make things worse? Elaborate on how it is helpful or why it might be harming your
performance. These are open-ended questions, and your responses will depend a lot on the performance
of the trained mixed density networks.
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