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Learning-based Perception

Machine learning has become an extremely powerful tool in the realm of com-
puter vision, particularly through the use of convolutional neural networks
(CNNs) and the increased availability of data and computational resources. This
chapter introduces the fundamentals of CNNs, as well as their application to
computer vision and robotics.

Modern Computer Vision

Modern computer vision techniques1 rely heavily on deep learning and convo- 1 D. A. Forsyth and J. Ponce. Computer
Vision: A Modern Approach. Prentice
Hall, 2011

lutional neural network architectures2. A convolutional neural network is a type
2 I. Goodfellow, Y. Bengio, and A.
Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016

of neural network with additional structure that is beneficial for image process-
ing tasks. In fact, CNNs can be said to be “regularized” neural networks since
the additional structure reduces the ability of the network to overfit to data.
This chapter will introduce each component3 in the architecture of a CNN, and 3 Convolutional layers, nonlinear ac-

tivations, pooling layers, and fully-
connected layers.

then discuss how CNNs can be applied to problems in robotics.

Figure 4.1: Example convolu-
tional neural network architec-
ture from LeCun et al. (1998).
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4.1 Convolutional Neural Networks

4.1.1 Convolution Layers

Figure 4.2: A convolution filter
being applied to a 3-channel
RGB image.

One of the main structural concepts that is unique to the architecture of a CNN
is the use of convolution layers. These layers exploit the underlying spatial local-
ity structure in images by using sliding “learned” filters, which are often much
smaller than the image itself. Mathematically these filters perform operations
in a similar way as other linear filters that have been used in image processing,
such as Gaussian smoothing filters, and can be expressed as affine functions:

f (x) = w>x + b,

where w is a vectorized representation of the weight parameters that define the
filter, x is a vectorized version of the image pixels covered by the filter, and b is
a scalar bias term. For example in Figure 4.2 a filter is applied over an image
with three color channels (red, green, blue). In this case the filter may have
dimension m× n× 3, which could be vectorized to a weight vector w with 3mn
elements. Additionally, the stride of the filter describes how many positions it
shifts by when sliding over the input. The output of the filter is also passed
through a nonlinear activation, typically a ReLU function.

Once the filter has been applied to the entire image, the collection of outputs
from the activation function will create a new “filtered image” typically re-
ferred to as an activation map. In practice a number of different filters are usually

Figure 4.3: The outputs of a
convolution filter and activa-
tion function applied across an
image make up a new image,
called an activation map.

learned in each convolution layer, which would simply produce a corresponding
number of activation maps as the output4. This is crucial such that each filter 4 Besides the number of filters applied

to the input, the width and height of
the filter, the amount of padding on the
input, and the stride of the filter are
other hyperparameters.

can focus on learning one specific relevant feature. Examples of different filters
that might be learned in different convolution layers of a CNN are shown in
Figure 4.45. Notice that the low-level features which are learned in earlier con-

5 M. D. Zeiler and R. Fergus. “Visualiz-
ing and Understanding Convolutional
Networks”. In: European Conference on
Computer Vision (ECCV). Springer, 2014,
pp. 818–833

volution layers look a lot like edge detectors (i.e. are more basic/fundamental)
while later convolution layers have filters that look more like actual objects.

In general, the use of convolution layers to exploit the spatial locality of im-
ages provides several benefits including:

1. Parameter sharing: the (small) filter’s parameters are applied at all points on
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Figure 4.4: Low-level, mid-level,
and high-level feature visualiza-
tions in a convolutional neural
network from Zeiler and Fergus
(2014).

the image. Therefore the total number of learned parameters in the model is
much smaller than if a fully-connected layer was used.

2. Sparse interactions: having the filter be smaller than the image allows for bet-
ter detection of smaller, more meaningful features and improves computation
time by requiring fewer mathematical operations to evaluate.

3. Equivariant representation: the convolution layer is equivariant to translation,
meaning that the convolution of a shifted image is equivalent to the shifted
convolution of the original image6. 6 However, convolution is not equivari-

ant to changes in scale or rotation.
4. The ability to work with images of varying size if needed.

4.1.2 Pooling Layers

Pooling is the second major structural component in CNNs. Pooling layers typ-
ically come after convolution layers (and their nonlinear activation functions).
Their primary function is to replace the output of the convolution layer’s activa-
tion map at particular locations with a “summary statistic” from other spatially
local outputs. This helps make the network more robust against small transla-
tions in the input, helps improve computational efficiency by reducing the size
of the input (i.e. it lowers the resolution), and is useful in enabling the input
images to vary in size7. The most common type of pooling is max pooling, but

7 The size of the pooling can be modi-
fied to keep the size of the pooling layer
output constant.

other types also exist (such as mean pooling).

Figure 4.5: Max pooling exam-
ple with 2 × 2 filter and stride
of 2.

Computationally, both max and mean pooling layers operate with the same
filtering idea as in the convolution layers. Specifically, a filter of width m and
height n slides around the layer’s input with a particular stride. The difference
between the two comes from the mathematical operation performed by the
filter, which as their names suggest are either a maximum element or the mean
over the filter. If the output of the convolution layer has N activation maps, the
output of the pooling layer will also have N “images”, since the pooling filter is
only applied across the spatial dimensions.

4.1.3 Fully Connected Layers

Downstream of the convolution and pooling layers are fully connected layers.
These layers make up what is essentially just a standard neural network, which
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is appended to the end of the network. The function of these layers is to take
the output of the convolution and pooling layers (which can be thought of as a
highly condensed representation of the image) and actually perform a classifi-
cation or regression. Generally the total number of fully connected layers at the
end of the CNN will only make up a fraction of the total number of layers.

4.1.4 CNN Performance

A CNN can be said to learn how to process images end-to-end because it essen-
tially learns how to perform two steps simultaneously: feature extraction and
classification or regression (i.e. it learns the entire process from image input to
the desired output). In contrast, classical approaches to image processing use
hand-engineered feature extractors. Since 2012, the performance of end-to-end
learning approaches to image processing have dominated and continue to im-
prove8. This continuous improvement has generally been realized with the use 8 Of course in some specific applications

hand-engineered features may still
be better! For example if engineering
insight can identify a structure to the
problem that a CNN could not.

of deeper networks.

4.2 CNNs for Object Detection and Localization

Modern computer vision techniques such as convolutional neural networks have
a large variety of applications in robotic perception, including object localization
and detection.

In object localization problems, the goal is to identify the position of an object
in the image. This is usually accomplished by specifying four numbers that de-
fine a bounding box for the object in the image9 (see Figure 4.6). To solve object 9 Box coordinates are usually the (x, y)

position of the top-left corner and the
width w and height h of the box.

localization problems with a CNN, the standard approach is to have the output
of the network be both the bounding box coordinates and an object class. This
can be accomplished by reusing the convolution and pooling layers of the CNN
but then have two separate branches of the fully connected layers: one trained
for classification and the other for localization10. To train a network to simulta- 10 Since the output of the localization

branch is four real numbers (x, y, w, h),
this would be considered a regression
problem and it is common to use and l2
loss function.

neously perform classification and localization, a multi-task loss function can be
defined by adding together the loss functions of each branch.

Figure 4.6: Bounding box pre-
diction for several objects in
an image from Ren, He, et al.
(2017)



principles of robot autonomy 5

If multiple objects exist within a single image the object localization and
classification problem becomes more difficult. First, the number of outputs of
the network may change! For example, outputting a bounding box for n ob-
jects would require 4n outputs. A practical solution to handling the problem of
varying outputs is to simply apply the CNN to a series of cropped images pro-
duced from the original image, where the network can also classify the image
as “background” (i.e. not an object)11. However, a naive implementation of this 11 This could be thought of as applying

the entire CNN as a filter that slides
across the image.

idea would likely result in an excessive number of CNN evaluations. Instead,
different approaches have been developed for making this idea efficient by re-
ducing the number of areas in the image that need to be evaluated. For example
this has been accomplished by identifying “regions of interest” in the image
through some other approach, or even partitioning the image into a grid.





Bibliography

[1] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2011.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[3] Y. LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[4] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 39.6 (2017), pp. 1137–1149.

[5] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional
Networks”. In: European Conference on Computer Vision (ECCV). Springer,
2014, pp. 818–833.


