Principles of Robot Autonomy II

Markov decision processes and dynamic programming

Today's lecture

- Aim
- Learn the fundamental principles of Markov decision processes and dynamic programming
- Readings
- D. Bertsekas. Reinforcement Learning and Optimal Control, 2019. Chapters 1 and 2.

Basic decision-making problem (deterministic)

- System: $\mathbf{x}_{k+1}=f_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right), \quad k=0, \ldots, N$
- Control constraints: $\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)$
- Cost:

$$
J\left(\mathbf{x}_{0} ; \boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N-1}\right)=g_{N}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)
$$

- Decision-making problem:

$$
J^{*}\left(\mathbf{x}_{0}\right)=\min _{\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right), k=0, \ldots, N-1} J\left(\mathbf{x}_{0} ; \boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{N-1}\right)
$$

Key points

- Discrete-time model
- Additive cost (central assumption)

Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality
Suppose optimal path for a multi-stage decision-making problem is

- first decision yields segment $a-b$ with cost $J_{a b}$
- remaining decisions yield segments $b-e$ with cost $J_{b e}$
- optimal cost is then $J_{a e}^{*}=J_{a b}+J_{b e}$

Principle of optimality

- Claim: If $a-b-e$ is optimal path from a to e, then $b-e$ is optimal path from b to e
- Proof: Suppose $b-c-e$ is the optimal path from b to e. Then

$$
J_{b c e}<J_{b e}
$$

and

$$
J_{a b}+J_{b c e}<J_{a b}+J_{b e}=J_{a e}^{*}
$$

Principle of optimality

Principle of optimality (for deterministic systems): Let $\left\{\mathbf{u}_{0}^{*}, \mathbf{u}_{1}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}$ be an optimal control sequence, which together with \mathbf{x}_{0}^{*} determines the corresponding state sequence $\left\{\mathbf{x}_{0}^{*}, \mathbf{x}_{1}^{*}, \ldots, \mathbf{x}_{N}^{*}\right\}$. Consider the subproblem whereby we are at \mathbf{x}_{k}^{*} at time k and we wish to minimize the cost-to-go from time k to time N, i. e.,

$$
g_{k}\left(\mathbf{x}_{k}^{*}, \mathbf{u}_{k}\right)+\sum_{m=k+1}^{N-1} g_{m}\left(\mathbf{x}_{m}, \mathbf{u}_{m}\right)+g_{N}\left(\mathbf{x}_{N}\right)
$$

Then the truncated optimal sequence $\left\{\mathbf{u}_{k}^{*}, \mathbf{u}_{k+1}^{*}, \ldots, \mathbf{u}_{N-1}^{*}\right\}$ is optimal for the subproblem

- Tail of optimal sequences optimal for tail subproblems

Applying the principle of optimality

Principle of optimality: if $b-c$ is the initial segment of the optimal path from b to f, then $c-f$ is the terminal segment of this path

Hence, the optimal trajectory is found by comparing:

$$
\begin{aligned}
C_{b c f} & =J_{b c}+J_{c f}^{*} \\
C_{b d f} & =J_{b d}+J_{d f}^{*} \\
C_{b e f} & =J_{b e}+J_{e f}^{*}
\end{aligned}
$$

Applying the principle of optimality

- need only to compare the concatenations of immediate decisions and optimal decisions \rightarrow significant decrease in computation / possibilities
- in practice: carry out this procedure backward in time

Example

Optimal cost: 18
Optimal path: $a \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h$

DP Algorithm

- Start with

$$
J_{N}^{*}\left(\mathbf{x}_{N}\right)=g_{N}\left(\mathbf{x}_{N}\right), \text { for all } \mathbf{x}_{N}
$$

- and for $k=N-1, \ldots, 0$, let

$$
J_{k}^{*}\left(\mathbf{x}_{k}\right)=\min _{\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)} g\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)+J_{k+1}^{*}\left(f\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)\right) \quad \text { for all } \mathbf{x}_{k}
$$

Once the functions $J_{0}^{*}, \ldots, J_{N}^{*}$ have been determined, the optimal sequence can be determined with a forward pass

Comments

- discretization (from differential equations to difference equations)
- quantization (from continuous to discrete state variables / controls)
- global minimum
- constraints, in general, simplify the numerical procedure
- curse of dimensionality

Basic decision-making problem (stochastic)

- System: $\mathbf{x}_{k+1}=f_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k}\right), \quad k=0, \ldots, N-1$
- Control constraints: $\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)$
- Probability distribution: $P_{k}\left(\cdot \mid \mathbf{x}_{k}, \mathbf{u}_{k}\right)$
- Policies: $\pi=\left\{\pi_{0}, \ldots, \pi_{N-1}\right\}$, where $\mathbf{u}_{k}=\pi_{k}\left(\mathbf{x}_{k}\right)$
- Expected cost:

$$
J_{\pi}\left(\mathbf{x}_{0}\right)=E_{\mathbf{w}_{k}, k=0, \ldots, N-1}\left\{g_{N}\left(\mathbf{x}_{N}\right)+\sum_{k=0}^{N-1} g_{k}\left(\mathbf{x}_{k}, \pi_{k}\left(\mathbf{x}_{k}\right), \mathbf{w}_{k}\right)\right\}
$$

- Decision-making problem:

$$
J^{*}\left(\mathbf{x}_{0}\right)=\min _{\pi} J_{\pi}\left(\mathbf{x}_{0}\right)
$$

Key points

- Discrete-time model
- Markovian model
- Objective: find optimal closed-loop policy
- Additive cost (central assumption)
- Risk-neutral formulation

Other communities use different notation:

- Powell, W. B. AI, OR and control theory: A Rosetta Stone for stochastic optimization. Princeton University, 2012. http://castlelab.princeton.edu/Papers/AIOR_July2012.pdf

Principle of optimality

Principle of optimality (for stochastic systems): Let $\pi^{*}:=$ $\left\{\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ be an optimal policy. Assume state \mathbf{x}_{k} is reachable. Consider the subproblem whereby we are at \mathbf{x}_{k} at time k and we wish to minimize the cost-to-go from time k to time N. Then the truncated policy $\left\{\pi_{k}^{*}, \pi_{k+1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ is optimal for the subproblem

- tail policies optimal for tail subproblems

DP Algorithm

DP Algorithm: For every initial state \mathbf{x}_{0}, the optimal cost $J^{*}\left(\mathbf{x}_{0}\right)$ is equal to $J_{0}\left(\mathbf{x}_{0}\right)$, given by the last step of the following algorithm, which proceeds backward in time from stage $N-1$ to stage 0 :

$$
J_{N}\left(\mathbf{x}_{N}\right)=g_{N}\left(\mathbf{x}_{N}\right)
$$

$J_{k}\left(\mathbf{x}_{k}\right)=\min _{\mathbf{u}_{k} \in U\left(\mathbf{x}_{k}\right)} E_{\mathbf{w}_{k}}\left\{g_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k}\right)+J_{k+1}\left(f_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}, \mathbf{w}_{k}\right)\right\}, \quad k=0, \ldots, N-1\right.$

Furthermore, if $\mathbf{u}_{k}^{*}=\pi_{k}^{*}\left(\mathbf{x}_{k}\right)$ minimizes the right-hand side of the above equation for each \mathbf{x}_{k} and k, the policy $\left\{\pi_{0}^{*}, \pi_{1}^{*}, \ldots, \pi_{N-1}^{*}\right\}$ is optimal

Example: Inventory Control Problem (1/3)

- Stock available $x_{k} \in \mathbb{N}$, inventory $u_{k} \in \mathbb{N}$, and demand $w_{k} \in \mathbb{N}$
- Dynamics: $x_{k+1}=\max \left(0, x_{k}+u_{k}-w_{k}\right)$
- Constraints: $x_{k}+u_{k} \leq 2$
- Probabilistic structure: $p\left(w_{k}=0\right)=0.1, p\left(w_{k}=1\right)=0.7$, and $p\left(w_{k}=2\right)=0.2$
- Cost

$$
E\{\underbrace{\{\begin{array}{l}
0 \\
0
\end{array}+\sum_{g_{k}\left(x_{k}, u_{k}, w_{k}\right)}^{2} \underbrace{\left.u_{k}+\left(x_{k}+u_{k}-w_{k}\right)^{2}\right)}\}}_{g_{3}\left(x_{3}\right)}
$$

Example: Inventory Control Problem (2/3)

- Algorithm takes form for $k=0,1,2$

$$
J_{k}\left(x_{k}\right)=\min _{0 \leq u_{k} \leq 2-x_{k}} E_{w_{k}}\left\{u_{k}+\left(x_{k}+u_{k}-w_{k}\right)^{2}+J_{k+1}\left(\max \left(0, x_{k}+u_{k}-w_{k}\right)\right)\right\}
$$

- For example

$$
\begin{aligned}
J_{2}(0)= & \min _{u_{2}=0,1,2} E_{w_{2}}\left\{u_{2}+\left(u_{2}-w_{2}\right)^{2}\right\}= \\
& \min _{u_{2}=0,1,2}\left\{u_{2}+0.1\left(u_{2}\right)^{2}+0.7\left(u_{2}-1\right)^{2}+0.2\left(u_{2}-2\right)^{2}\right\}
\end{aligned}
$$

which yields $J_{2}(0)=1.3$, and $\pi_{2}^{*}(0)=1$

Example: Inventory Control Problem (3/3)

Final solution:

- $J_{0}(0)=3.7$,
- $J_{0}(1)=2.7$, and
- $J_{0}(2)=2.818$
(see this spreadsheet)

Difficulties of DP

- Curse of dimensionality:
- Exponential growth of the computational and storage requirements
- Intractability of imperfect state information problems
- Curse of modeling: if "system stochastics" are complex, it is difficult to obtain expressions for the transition probabilities
- Curse of time
- The data of the problem to be solved is given with little advance notice
- The problem data may change as the system is controlled-need for on-line replanning

Next time

