
Principles of Robot Autonomy II
Intro to Reinforcement Learning

Today’s lecture

• Aim
• Provide intro to RL

References:
• Sutton and Barto, Reinforcement Learning: an Introduction
• Bertsekas, Reinforcement Learning and Optimal Control

Courses at Stanford:
- CS 234 Reinforcement Learning
- CS 332 Advanced Survey of Reinforcement Learning
- MS&E 338 Reinforcement Learning

1/22/24 AA 274B | Lecture 4 2

http://web.stanford.edu/class/cs234/index.html
http://cs332.stanford.edu/
https://web.stanford.edu/class/msande338/

What is Reinforcement Learning?

Learning how to make good decisions by interaction

1/22/24 AA 274B | Lecture 4 3

Why Reinforcement Learning

• Only need to specify a reward function. Agent learns everything
else!
• Successes in
• Helicopter acrobatics

• Superhuman Gameplay: Backgammon, Go, Atari

• Investment portfolio management

• Making a humanoid robot walk

1/22/24 AA 274B | Lecture 4 4

Why Reinforcement Learning?

• Only need to specify a reward function. Agent learns everything
else!
• Successes in
• Helicopter acrobatics

• positive for following desired traj, negative for crashing
• Superhuman Gameplay: Backgammon, Go, Atari

• positive/negative for winning/losing the game
• Investment portfolio management

• positive reward for $$$
• Making a humanoid robot walk

• positive for forward motion, negative for falling

1/22/24 AA 274B | Lecture 4 5

Infinite Horizon MDPs

State: 𝑥 ∈ 𝒳 (often 𝑠 ∈ 𝒮)
Action: 𝑢 ∈ 𝒰 (often 𝑎 ∈ 𝒜)
Transition Function: 𝑇 𝑥! 𝑥!"# , 𝑢!"#) = 𝑝(𝑥!|𝑥!"#, 𝑢!"#)
Reward Function: 𝑟! = 𝑅(𝑥! , 𝑢!)
Discount Factor: 𝛾

MDP (stationary model): ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

1/22/24 AA 274B | Lecture 4 6

Infinite Horizon MDPs

MDP: ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Stationary policy: 𝑢! = 𝜋(𝑥!)

Goal: Choose policy that maximizes cumulative (discounted) reward

𝑉∗ = max
#

𝐸 3
!$%

𝛾!𝑅 𝑥!, 𝜋 𝑥! ;

𝜋∗ = arg max
#

𝐸 3
!$%

𝛾!𝑅 𝑥!, 𝜋 𝑥!

1/22/24 AA 274B | Lecture 4 7

Infinite Horizon MDPs

• The optimal value function 𝑉∗(𝑥) satisfies Bellman’s equation

𝑉∗(𝑥) = max
%

𝑅 𝑥, 𝑢 + 𝛾 :
&!∈𝒳

𝑇 𝑥) 𝑥, 𝑢 𝑉∗ 𝑥)

• For any stationary policy 𝜋, the values 𝑉# 𝑥 ≔
𝐸 ∑!$%𝛾!𝑅 𝑥!, 𝜋 𝑥! | 𝑥% = 𝑥 are the unique solution to the equation

𝑉*(𝑥) = 𝑅 𝑥, 𝜋(𝑥) + 𝛾 :
&!∈𝒳

𝑇 𝑥) 𝑥, 𝜋(𝑥) 𝑉* 𝑥)

1/22/24 AA 274B | Lecture 4 8

State-action value functions (Q functions)
• The expected cumulative discounted reward starting from 𝑥, applying 𝑢, and

following the optimal policy thereafter

𝑉∗(𝑥) = max
"

𝑅 𝑥, 𝑢 + 𝛾 .
#!∈𝒳

𝑇 𝑥& 𝑥, 𝑢 𝑉∗ 𝑥&

• The optimal 𝑄 function, 𝑄∗(𝑥, 𝑢), satisfies Bellman’s equation
𝑄∗ 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 .

#!∈𝒳

𝑇 𝑥& 𝑥, 𝑢 max
"!

𝑄∗ 𝑥&, 𝑢&

• For any stationary policy 𝜋, the corresponding 𝑄 function satisfies
𝑄'(𝑥, 𝑢) = 𝑅 𝑥, 𝑢 + 𝛾 .

#!∈𝒳

𝑇 𝑥& 𝑥, 𝑢 𝑄' 𝑥&, 𝜋(𝑥&)

1/22/24

𝑄∗(𝑥, 𝑢)

AA 274B | Lecture 4 9

Solving infinite-horizon MDPs

If you know the model (i.e., the transition function 𝑇 and reward
function 𝑅), use ideas from dynamic programming
• Value Iteration / Policy Iteration

Reinforcement Learning: learning from interaction
• Model-based
• Model-free

1/22/24 AA 274B | Lecture 4 10

Value Iteration

• Initialize 𝑉1(𝑥) = 0 for all states 𝑥
• Loop until finite horizon / convergence:

𝑉23#(𝑥) = max
%

𝑅 𝑥, 𝑢 + 𝛾 :
&!∈𝒳

𝑇 𝑥) 𝑥, 𝑢 𝑉2 𝑥)

• Value iteration for 𝑄 functions

𝑄23# 𝑥, 𝑢 = 𝑅 𝑥, 𝑢 + 𝛾 :
&!∈𝒳

𝑇 𝑥) 𝑥, 𝑢 max
%!

𝑄2 𝑥), 𝑢′

1/22/24 AA 274B | Lecture 4 11

Policy Iteration
Starting with a policy 𝜋! 𝑥 , alternate two steps:
1. Policy Evaluation

Compute 𝑉"((𝑥) as the solution of

𝑉"((𝑥) = 𝑅 𝑥, 𝜋!(𝑥) + 𝛾 +
#)∈𝒳

𝑇 𝑥& 𝑥, 𝜋(𝑥) 𝑉"(𝑥
&

2. Policy Improvement
Define 𝜋!'(𝑥 = argmax

)
𝑅 𝑥, 𝑢 + 𝛾 ∑#)∈𝒳 𝑇 𝑥& 𝑥, 𝑢 𝑉"(𝑥

&

Proposition: 𝑉"(*+ 𝑥 ≥ 𝑉"(𝑥 ∀ 𝑥 ∈ 𝒳
Inequality is strict if 𝜋! is suboptimal

Use this procedure to iteratively improve policy until convergence

1/22/24 AA 274B | Lecture 4 12

Recap

• Value Iteration
• Estimate optimal value function
• Compute optimal policy from optimal value function

• Policy Iteration
• Start with random policy
• Iteratively improve it until convergence to optimal policy

• Requires model of MDP to work!

1/22/24 AA 274B | Lecture 4 13

Learning from Experience

• Without access to the model, agent
needs to optimize a policy from
interaction with an MDP
• Only have access to trajectories in

MDP:
• 𝜏 = (𝑥1, 𝑢1, 𝑟1, 𝑥#, … , 𝑢4"#, 𝑟4"#, 𝑥4)

1/22/24 AA 274B | Lecture 4 14

Learning from Experience

How to use trajectory data?

• Model based approach: estimate 𝑇(𝑥’|𝑥, 𝑢), then use model to plan

• Model free:
• Value based approach: estimate optimal value (or Q) function from data
• Policy based approach: use data to determine how to improve policy
• Actor Critic approach: learn both a policy and a value/Q function

1/22/24 AA 274B | Lecture 4 15

Learning from Experience

How to use trajectory data?

• Model based approach: estimate 𝑇(𝑥’|𝑥, 𝑢), then use model to plan

• Model free:
• Value based approach: estimate optimal value (or Q) function from data
• Policy based approach: use data to determine how to improve policy
• Actor Critic approach: learn both a policy and a value/Q function

1/22/24 AA 274B | Lecture 4 16

Temporal difference (TD) learning

• Main idea: use bootstrapped Bellman equation to update value
estimates
• Bootstrapping: use learned value for next state to update value at

current state
• aims to enforce consistency with respect to Bellman’s equation:

E 𝑄* 𝑥2 , 𝑢2 − 𝑟2 + 𝛾𝑄*(𝑥23#, 𝑢23# = 0

Temporal Difference (TD) error

1/22/24 AA 274B | Lecture 4 17

TD policy evaluation

Suppose we have a policy 𝜋; we want to compute an estimate of 𝑄*.
With step size 𝛼 ∈ 0,1 , loop:
1. Sample (𝑥2 , 𝑢2 , 𝑟2 , 𝑥23#) from MDP

2. G𝑄 𝑥2 , 𝑢2 ← G𝑄 𝑥2 , 𝑢2 + 𝛼 𝑟2 + 𝛾 G𝑄 𝑥23#, 𝑢23# − G𝑄 𝑥2 , 𝑢2

Notes:
• Can consider a decreasing sequence of step sizes to ensure convergence

1/22/24 AA 274B | Lecture 4 18

Q-learning

Instead of estimating 𝑄*, try to estimate 𝑄∗ via

𝑄 𝑥2 , 𝑢2 ← 𝑄 𝑥2 , 𝑢2 + 𝛼 𝑟2 + 𝛾max% 𝑄 𝑥23#, 𝑢 − 𝑄 𝑥2 , 𝑢2

(using the TD error for the optimal policy 𝜋∗, instead of 𝜋)

Thus, we aim to estimate 𝑄∗ from a (possibly sub-optimal)
demonstration policy 𝜋. This property is known as off-policy learning

1/22/24 AA 274B | Lecture 4 19

Exploration vs. Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn
• We can only learn about states we visit and actions we take
• Need to explore to ensure we get the data we need
• Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.
𝜖-greedy exploration:
• With some small probability 𝜖, take a random action; otherwise take the most

promising action

1/22/24 AA 274B | Lecture 4 20

Q-learning with 𝜖-greedy exploration

Initialize 𝑄(𝑥, 𝑢) for all states and actions.
Let 𝜋(𝑥) be an 𝜖-greedy policy according to 𝑄, i.e.,

𝜋 𝑥 = :UniformRandom 𝒰
argmax)𝑄 𝑥, 𝑢

with probability 𝜖
with probability (1 − 𝜖)

Loop:
1. Take action: 𝑢! ∼ 𝜋(𝑥!).
2. Observe reward and next state: (𝑟! , 𝑥!'().
3. Update 𝑄 to minimize TD error:

𝑄 𝑥! , 𝑢! ← 𝑄 𝑥! , 𝑢! + 𝛼 𝑟! +max) 𝑄 𝑥!'(, 𝑢 − 𝑄 𝑥! , 𝑢!

1/22/24 AA 274B | Lecture 4 21

Fitted Q Learning

How to deal with large/continuous state/action spaces?
Use parametric model for 𝑄 function: 𝑄&(𝑥, 𝑢) (e.g., 𝑄& 𝑥, 𝑢 = 𝜃'𝜙(𝑥, 𝑢))

Stochastic gradient descent on squared TD error to update 𝜃:

𝜃 ← 𝜃 + 𝛼 𝑟(+ 𝛾max) 𝑄& 𝑥(*+, 𝑢 − 𝑄& 𝑥(, 𝑢(∇&𝑄&(𝑥(, 𝑢()

learning rate 𝒅(𝑺𝒒𝒖𝒂𝒓𝒆𝒅	𝑻𝑫	𝑬𝒓𝒓𝒐𝒓)
𝒅𝑸

𝒅𝑸
𝒅𝜽

1/22/24 AA 274B | Lecture 4 22

Q Learning Recap

Pros:
• Can learn 𝑄 function from any interaction data, not just trajectories gathered

using the current policy (“off-policy” algorithm)
• Relatively data-efficient (can reuse old interaction data)

Cons:
• Need to optimize over actions: hard to apply to continuous action spaces
• Optimal 𝑄 function can be complicated, hard to learn
• Optimal policy might be much simpler!

Other popular model-free, value-based approach: SARSA (on policy algorithm)

1/22/24 AA 274B | Lecture 4 23

Next time

1/22/24

More on:

AA 274B | Lecture 4 24

