
Principles of Robot Autonomy II
Model-based and Model-free RL for Robot Control



Learning from Experience

How to use trajectory data?

• Model based approach: estimate 𝑇(𝑥’|𝑥, 𝑢), then use model to plan

• Model free:
• Value based approach: estimate optimal value (or 𝑄) function from data
• Policy based approach: use data to determine how to improve policy
• Actor Critic approach: learn both a policy and a value/𝑄 function
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Model-free, policy based: Policy Gradient

Alternative: instead of learning the 𝑄 function, learn the policy directly!

Define a class of policies 𝜋! where 𝜃 are the parameters of the policy

Can we learn the optimal 𝜃 from interaction?

Goal: use trajectories to estimate a gradient of policy performance 
w.r.t. parameters 𝜃

1/24/24 AA 274B | Lecture 5 4



Policy Gradient

A particular value of 𝜃 induces a distribution 𝑝 𝜏; 𝜃 over possible trajectories
• Distribution comes from stochastic dynamics 𝑇 𝑥! 𝑥, 𝑢) as well as stochastic policy 
𝑢 ∼ 𝜋 ⋅ 𝑥; 𝜃). 

Objective function:
𝐽 𝜃 = 𝐸"∼$ ";& 𝑟 𝜏

i.e.,

𝐽 𝜃 = 5
"
𝑟 𝜏 𝑝 𝜏; 𝜃 𝑑𝜏

where 𝑟 𝜏 is the total discounted cumulative reward of a trajectory 𝜏
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Policy Gradient

Gradient of objective w.r.t. parameters:

∇!𝐽 𝜃 = %
"
𝑟 𝜏 ∇!𝑝 𝜏; 𝜃 𝑑𝜏

Trick: ∇!𝑝 𝜏; 𝜃 = 𝑝 𝜏; 𝜃 ∇!$(";!)
$ ";!

= 𝑝 𝜏; 𝜃 ∇! log 𝑝 𝜏; 𝜃

∇!𝐽 𝜃 = %
"
𝑟 𝜏 ∇! log 𝑝 𝜏; 𝜃 𝑝 𝜏; 𝜃 𝑑𝜏

∇!𝐽 𝜃 = 𝐸"∼$ "; ! 𝑟 𝜏 ∇! log 𝑝 𝜏; 𝜃
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Policy Gradient

∇!𝐽 𝜃 = 𝐸"∼$ "; ! 𝑟 𝜏 ∇! log 𝑝 𝜏; 𝜃

log 𝑝 𝜏; 𝜃 = log 7
&'(

𝑇 𝑥&)* 𝑥& , 𝑢& 𝜋!(𝑢&|𝑥&)

=8
&'(

log 𝑇 𝑥&)* 𝑥& , 𝑢& + log 𝜋!(𝑢&|𝑥&)

⇒ ∇! log 𝑝 𝜏; 𝜃 =8
&'(

∇! log 𝜋!(𝑢&|𝑥&)
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Policy Gradient

∇!𝐽 𝜃 = 𝐸"∼$ "; ! 𝑟 𝜏 ∇! log 𝑝 𝜏; 𝜃

log 𝑝 𝜏; 𝜃 = log 7
&'(

𝑇 𝑥&)* 𝑥& , 𝑢& 𝜋!(𝑢&|𝑥&)

=8
&'(

log 𝑇 𝑥&)* 𝑥& , 𝑢& + log 𝜋!(𝑢&|𝑥&)

⇒ ∇! log 𝑝 𝜏; 𝜃 =8
&'(

∇! log 𝜋!(𝑢&|𝑥&)

1/24/24 AA 274B | Lecture 5 8

We don’t need to know 
the transition model to 
compute this gradient!



Policy Gradient

If we use 𝜋! to sample a trajectory, we can approximate the gradient 
via 𝑁 Monte Carlo samples:

∇!𝐽 𝜃 = 𝐸"∼$ ";! 𝑟 𝜏 ∇! log 𝑝 𝜏; 𝜃

≈ *
+
∑,-*+ 𝑟 𝜏(,) ∑&'(∇! log 𝜋!(𝑢&

(,)|𝑥&
(,))

Intuition: adjust 𝜃 to:
• Boost probability of actions taken if reward is high
• Lower probability of actions taken if reward is low

Learning by trial and error
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Time dependency of policy gradient theorem

• Previous estimator for policy gradient was 

∇&𝐽 𝜃 ≈
1
𝑁
;
'()

*

𝑟 𝜏(') ;
-./

∇& log 𝜋&(𝑢-
(')|𝑥-

('))

Action 𝑢&! can not change reward 𝑟& for 𝑡 < 𝑡0 (i.e., previous timesteps):

∇!𝐽 𝜃 ≈
1
𝑁&

"#$

%

&
&'(

∇! log 𝜋!(𝑢&
(")|𝑥&

("))&
+'&

𝑟(𝑥+
" , 𝑢+

" )
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(caveat: this is not a rigorous 
argument we’re presenting here)



REINFORCE

Loop forever:
Generate episode 𝑥(, 𝑢(, 𝑟(, 𝑥*, 𝑢*, 𝑟*… with 𝜋!
Loop for all 𝑡 = 0,… ,𝑁 − 1:

𝐺& ← ∑1-&+ 𝑟1
𝜃 ← 𝜃 + 𝛼 𝐺& ∇! log 𝜋! 𝑢& 𝑥&)
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Cumulative tail reward, 
the tail “return”



Policy Gradient Recap

Pros:
• Learns policy directly – can be more stable (less moving parts than Q-learning)
• Works for continuous action spaces (no need to “argmax” Q)
• Converges to local maximum of 𝐽(𝜃)

Cons:
• Needs data from current policy to compute gradient – data inefficient
• Gradient estimates can be very noisy

• Need to reduce variance of gradient estimator: baselines and actor-critic
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Deep Reinforcement Learning

• Deep  𝑄 learning:
• Use neural network as  𝑄 function
• Works in continuous state space 

domains

• Deep Policy Gradient:
• Parameterize policy as deep neural 

network
• Policy can act on high dimensional 

input, e.g., directly from visual 
feedback
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Tabular model-based RL

• Discrete state/action space with stochastic transitions
• If model is known, can use value iteration/policy iteration/etc. 
• Model unknown: want to build approximate model from observed 

transitions
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Tabular MBRL outline

• Assume initial policy
• Loop forever:
• Take some number of actions, resulting in transition/reward data
• Improve dynamics model
• Choose actions/policy

• Approaches for action selection:
• Dynamic programming/VI/etc. on approximate model

• Expensive, gives optimal policy for model
• Plan suboptimal sequence of actions via online control optimization
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Learning a tabular model from data

• States 𝐱*, 𝐱2, … , 𝐱3
• Actions 𝐮*, 𝐮2, … , 𝐮4
• Want to learn 𝑝 𝐱, 𝐱5, 𝐮1) for all 𝑖, 𝑗, 𝑘

• Main strategies:
• max likelihood point estimation 
• Bayesian approaches 
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Max likelihood for tabular MBRL

• Categorical likelihood: 𝑝 𝐱' 𝐱0, 𝐮1, 𝛉 = 𝛉'01; ∑' 𝛉'01 = 1
• Assume data 𝐷 = { 𝐱, 𝐮, 𝐱! }'()2

• Max likelihood: 
max
!∈#

9
$

log 𝑝(𝐱%|𝐱, 𝐮, 𝛉)

• Optimizing this gives the maximum likelihood estimate

H𝛉'01 =
𝑁 𝐱0, 𝐮1, 𝐱'
𝑁 𝐱0, 𝐮1

where 𝑁 ⋅,⋅ is the empirical count 
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Max likelihood for tabular MBRL

• 𝛉,C1 = 𝑁(𝐱C , 𝐮1 , 𝐱,)/𝑁 𝐱C , 𝐮1
• Problem: what if 𝑁 𝐱C , 𝐮1 = 0? 

• For example, if we are starting with zero information, this 
model estimation scheme breaks

• Simple solution: start all of our counts at 1, i.e.,
• Store 𝑁(𝐱0, 𝐮1, 𝐱'); note that 𝑁 𝐱0, 𝐮1 = ∑𝐱!𝑁(𝐱0, 𝐮1, 𝐱')
• Replace 𝑁(𝐱0, 𝐮1, 𝐱') with 𝑁 𝐱0, 𝐮1, 𝐱' + 1
• Gives 𝛉'01 = (𝑁 𝐱0, 𝐮1, 𝐱' + 1)/(𝑁 𝐱0, 𝐮1 + 𝑛)
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Why model-based?

• Advantages
• Transitions give strong signal
• Data efficiency, improved multi-task performance, generalization

• Weaknesses
• Optimizing the wrong objective (i.e., not your ultimate task of optimizing reward)
• May be very difficult/intractable for systems with high dimensional 

observations/states
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Challenges in RL for Robotics

Data-efficiency

Sim-to-real

Exploration

Reward design
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Next time
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